Vol. 50
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-29
Direction-Controllable Electromagnetic Acoustic Transducer for SH Waves in Steel Plate Based on Magnetostriction
By
Progress In Electromagnetics Research M, Vol. 50, 151-160, 2016
Abstract
Shear-horizontal (SH) wave is commonly used in monitoring and detecting steel plate structures. Electromagnetic acoustic transducer (EMAT) based on magnetostriction owns higher transducing efficiency and can be applied in non-contact situations. In some practical applications, it is necessary to inspect the structure on a specific direction and the inspecting direction is required to be variable and accurately controllable. This work proposes a novel direction-controllable EMAT for SH0 mode waves based on magnetostriction. Theoretical foundation and analysis on the magnetostriction model of the new EMAT and working parameters determination are conducted. The detailed structure and design of the new EMAT are presented, with the pre-magnetized open annular nickel strap bonded to the steel plate providing the circumferential static bias magnetic field, and the cooperation of embedded conductors in the rotating slider and open metal rings providing the dynamic magnetic field. Besides, the experimental system for the performance verification of the new EMAT is setup. Three indexes, the dead zone angle, focus angle and consistency error are defined to evaluate the performance quantitatively. The dead zone angle of the new EMAT is 28.74°; the focus angle is 10.7°; the consistency error is only 1.4%. Experimental results show that the proposed direction-controllable EMAT is highly directional. The stimulating direction can be accurately controlled, and the circumferential consistency is fairly high. The direction-controllable EMAT can hopefully provide a practical solution for directional monitoring and inspecting for steel plate structures.
Citation
Yu Zhang, Songling Huang, Shen Wang, and Wei Zhao, "Direction-Controllable Electromagnetic Acoustic Transducer for SH Waves in Steel Plate Based on Magnetostriction," Progress In Electromagnetics Research M, Vol. 50, 151-160, 2016.
doi:10.2528/PIERM16072203
References

1. Zhao, Q., J. N. Hao, and W. L. Yin, "A simulation study of flaw detection for rail sections based on high frequency magnetic induction sensing using the boundary element method," Progress In Electromagnetics Research, Vol. 141, 309-325, 2013.
doi:10.2528/PIER13042702

2. Shlivinski, A., "Ultra wideband wave-based linear inversion in lossless ladder networks," Progress In Electromagnetics Research, Vol. 125, 97-118, 2012.
doi:10.2528/PIER12010804

3. Gravenkamp, H., "A remark on the computation of shear-horizontal and torsional modes in elastic waveguides," Ultrasonics, Vol. 69, 25-28, 2016.
doi:10.1016/j.ultras.2016.03.003

4. Wang, Q., M. Hong, and Z. Q. Su, "An in-situ structural health diagnosis technique and its realization via a modularized system," IEEE Transactions on Instrumentation and Measurement, Vol. 64, 873-887, 2015.
doi:10.1109/TIM.2014.2362417

5. Li, J. and B. Shanker, "Time-dependent Lorentz-Mie-Debye formulation for electromagnetic scattering from dielectric spheres," Progress In Electromagnetics Research, Vol. 154, 195-208, 2015.
doi:10.2528/PIER15121404

6. Lee, J., J. Park, and Y. Cho, "A novel ultrasonic NDE for shrink fit welded structures using interface waves," Ultrasonics, Vol. 68, 1-7, 2016.
doi:10.1016/j.ultras.2016.01.009

7. Hirao, M. and H. Ogi, "An SH-wave EMAT technique for gas pipeline inspection," NDT & E International, Vol. 32, 127-132, 1999.
doi:10.1016/S0963-8695(98)00062-0

8. Khalili, P. and P. Cawley, "Excitation of single-mode lamb waves at high-frequency-thickness products," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 63, 303-312, 2016.
doi:10.1109/TUFFC.2015.2507443

9. Karaiskos, G., A. Deraemaeker, D. G. Aggelis, and D. Van Hemelrijck, "Monitoring of concrete structures using the ultrasonic pulse velocity method," Smart Materials and Structures, Vol. 24, 113001, 2015.
doi:10.1088/0964-1726/24/11/113001

10. Murayama, R., "Non-destructive evaluation of formability in cold rolled steel sheets using the SH0-mode plate wave by electromagnetic acoustic transducer," Ultrasonics, Vol. 39, 335-343, 2001.
doi:10.1016/S0041-624X(01)00068-3

11. Ding, J. C., B. Wu, and C. F. He, "Reflection and transmission coefficients of the SH0 mode in the adhesive structures with imperfect interface," Ultrasonics, Vol. 70, 248-257, 2016.
doi:10.1016/j.ultras.2016.05.010

12. Lowe, P. S., R. M. Sanderson, N. V. Boulgouris, A. G. Haig, and W. Balachandran, "Inspection of cylindrical structures using the first longitudinal guided wave mode in isolation for higher flaw sensitivity," IEEE Sensors Journal, Vol. 16, 706-714, 2016.
doi:10.1109/JSEN.2015.2487602

13. Glushkov, E., N. Glushkova, A. Eremin, and R. Lammering, "Group velocity of cylindrical guided waves in anisotropic laminate composites," Journal of the Acoustical Society of America, Vol. 135, 148-154, 2014.
doi:10.1121/1.4829534

14. Keller, S. M., A. E. Sepulveda, and G. P. Carman, "Effective magnetoelectric properties of magnetoelectroelastic (multiferroic) materials and effects on plane wave dynamics," Progress In Electromagnetics Research, Vol. 154, 115-126, 2015.
doi:10.2528/PIER15082008

15. Thring, C. B., Y. Fan, and R. S. Edwards, "Focused Rayleigh wave EMAT for characterisation of surface-breaking defects," NDT & E International, Vol. 81, 20-27, 2016.
doi:10.1016/j.ndteint.2016.03.002

16. Seher, M. and R. Challis, "The electrical properties of a planar coil electromagnetic acoustic transducer and their implications for noise performance," Measurement Science and Technology, Vol. 27, 025102, 2016.
doi:10.1088/0957-0233/27/2/025102

17. Lee, J. K., H. W. Kim, and Y. Y. Kim, "Omnidirectional lamb waves by axisymmetrically-configured magnetostrictive patch transducer," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 60, 1928-1934, 2013.
doi:10.1109/TUFFC.2013.2777

18. Ribichini, R., F. Cegla, P. B. Nagy, and P. Cawley, "Experimental and numerical evaluation of electromagnetic acoustic transducer performance on steel materials," NDT & E International, Vol. 45, 32-38, 2012.
doi:10.1016/j.ndteint.2011.08.007

19. Dixon, S., M. P. Fletcher, and G. Rowlands, "The accuracy of acoustic birefringence shear wave measurements in sheet metal," Journal of Applied Physics, Vol. 104, 114901, 2008.
doi:10.1063/1.3033395

20. Seung, H. M., C. Il Park, and Y. Y. Kim, "An omnidirectional shear-horizontal guided wave EMAT for a metallic plate," Ultrasonics, Vol. 69, 58-66, 2016.
doi:10.1016/j.ultras.2016.03.011

21. Wilcox, P. D., M. Lowe, and P. Cawley, "Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 52, 653-665, 2005.
doi:10.1109/TUFFC.2005.1428048

22. Roh, Y. and J. Kim, "Detection of cracks on a plate by piezoelectric interdigital transducers," Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2011.

23. Masuyama, H., K. Mizutani, and K. Nagai, "Sound source with direction-variable beam using annular transducer array," 2002 IEEE Ultrasonics Symposium Proceedings, Vol. 1-2, 1097-1100, 2002.

24. Iwaya, K., R. Murayama, and T. Hirayama, "Study of ultrasonic sensor that is effective for all direction using an electromagnetic force," International Conference on Experimental Mechanics 2014, Vol. 9302, 2015.

25. Wei, Z., S. L. Huang, S.Wang, and W. Zhao, "Magnetostriction-based omni-directional guided wave transducer for high-accuracy tomography of steel plate defects," IEEE Sensors Journal, Vol. 15, 6549-6558, 2015.
doi:10.1109/JSEN.2015.2462834