Vol. 63
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-10-09
A Planar Out-of-Phase Power Divider with Unequal Power Dividing Ratio
By
Progress In Electromagnetics Research Letters, Vol. 63, 37-43, 2016
Abstract
A planar power divider with unequal power division and out-of-phase feature is presented. Firstly, the principle of the proposed power divider containing transmission lines with the same characteristic impedance is analyzed. The power dividing ratio can be adjusted by only the elctrical lengths of the transmission lines. Design equations of the proposed circuit are derived. Secondly, the method to reduce the size of the power divider is discussed. For illustration, a 2:1 prototype operating at 1.5 GHz is designed, fabricated and measured. The measured results show that S21, S31, and S11 are about -1.84, -4.96 and -28.4 dB at 1.5 GHz, respectively, that the isolation S23 is better than -20 dB from 1.44 to 1.56 GHz and that the phase difference between two output ports is about 180.54˚ at the center frenquency.
Citation
Shiyong Chen, Tianlin Zhang, Tianchong Huang, and Yantao Yu, "A Planar Out-of-Phase Power Divider with Unequal Power Dividing Ratio," Progress In Electromagnetics Research Letters, Vol. 63, 37-43, 2016.
doi:10.2528/PIERL16072202
References

1. Fan, L. and K. Chang, "A 180˚ out-of-phase power divider using asymmetrical coplanar stripline," IEEE Microw. Guid. Wave Lett., Vol. 6, No. 11, 404-406, 1996.
doi:10.1109/75.541454

2. Kim, J.-S., M.-J. Park, and M.-G. Kim, "Out-of-phase Wilkinson power divider," Electron. Lett., Vol. 45, No. 1, 59-60, 2009.
doi:10.1049/el:20092777

3. Bialkowski, M. E. and A. M. Abbosh, "Design of a compact UWB out-of-phase power divider," IEEE Microw. Wirel. Compon. Lett., Vol. 27, No. 4, 289-291, 2007.
doi:10.1109/LMWC.2007.892979

4. Song, K., Y. Mo, and Q. Xue, "Wideband four-way out-of-phase slotline power dividers," IEEE Trans. Industrial Electronics, Vol. 61, No. 7, 3598-3606, 2014.
doi:10.1109/TIE.2013.2279380

5. Chiu, L., Q. Xue, and C. H. Chan, "A wideband compact parallel-strip 180◦ Wilkinson power divider for push-pull circuitries," IEEE Microw. Wirel. Compon. Lett., Vol. 16, No. 1, 49-51, 2006.
doi:10.1109/LMWC.2005.859972

6. Yang, T. and J.-X. Chen, "A dual-band out-of-phase power divider," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 3, 188-190, 2008.
doi:10.1109/LMWC.2008.916800

7. Chen, J.-X., Z.-H. Bao, and Q. Xue, "Analysis and design of out-of-phase power divider with arbitrary division ratio," IET Microw. Anten. & Propag., Vol. 4, No. 9, 1370-1376, 2010.
doi:10.1049/iet-map.2009.0389

8. Dai, G.-L. and X.-C. Wei, "Novel dual-band out-of-phase power divider with high power handling capability," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2403-2409, 2012.
doi:10.1109/TMTT.2012.2190745

9. Lu, Y. L., G.-L. Dai, X. Wei, and E. Li, "A broadband out-of-phase power divider for high power applications using through ground via (Tgv)," Progress In Electromagnetics Research, Vol. 137, 653-667, 2013.
doi:10.2528/PIER13010705

10. Abbosh, A. M., "Planar out-of-phase power divider/combiner for wideband high power microwave applications," IEEE Trans. Compon. Pack. Manu. Tech., Vol. 4, No. 3, 465-471, 2014.
doi:10.1109/TCPMT.2013.2277587

11. Chen, S., Y. Yu, and M. Tang, "Planar out-of-phase Gysel power divider with high power splitting ratio," Electron. Lett., Vol. 51, No. 24, 2010-2012, 2015.
doi:10.1049/el.2015.1956

12. Cheng, K.-K. M. and P.-W. Li, "A novel power-divider design with unequal power-dividing ratio and simple layout," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 6, 1589-1594, 2009.
doi:10.1109/TMTT.2009.2019997

13. Ahn, H.-R., "Small wideband coupled-line ring hybrids with no restriction on coupling power," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 7, 1806-1817, 2009.
doi:10.1109/TMTT.2009.2022815