1. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002
2. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Physical Review B, Vol. 65, 144440, 2002.
doi:10.1103/PhysRevB.65.144440
3. Schurig, D., J. Mock, and D. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681
4. Smith, D., J. Pendry, and M. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
doi:10.1126/science.1096796
5. Padilla, W., D. Basov, and D. Smith, "Negative refractive index metamaterials," Materials Today, Vol. 9, No. 78, 28-35, 2006.
doi:10.1016/S1369-7021(06)71573-5
6. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628
7. Pendry, J., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
8. Freire, M., R. Marques, and L. Jelinek, "Experimental demonstration of a = 1 metamaterial lens for magnetic resonance imaging," Applied Physics Letters, Vol. 93, No. 23, 231108, 2008.
doi:10.1063/1.3043725
9. Greegor, R., C. Parazzoli, J. A. Nielsen, M. H. Tanielian, D. Vier, S. Schultz, C. Holloway, and R. Ziolkowski, "Demonstration of impedance matching using a mu-negative (mng) metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 92-95, 2009.
doi:10.1109/LAWP.2008.2011570
10. Erentok, A. and R. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 691-707, 2008.
doi:10.1109/TAP.2008.916949
11. Ziolkowski, R., P. Jin, and C.-C. Lin, "Metamaterial-inspired engineering of antennas," Proceedings of the IEEE, Vol. 99, No. 10, 1720-1731, 2011.
doi:10.1109/JPROC.2010.2091610
12. Gil, I., J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electronic Letters, Vol. 40, No. 21, 1347-1348, 2004.
doi:10.1049/el:20046389
13. Reynet, O. and O. Acher, "Voltage controlled metamaterial," Applied Physics Letters, Vol. 84, No. 7, 1198-1200, 2004.
doi:10.1063/1.1646731
14. Hand, T. and S. Cummer, "Characterization of tunable metamaterial elements using mems switches," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 401-404, 2007.
doi:10.1109/LAWP.2007.902807
15. Zou, D., A. Jiang, and R.-X. Wu, "Ferromagnetic metamaterial with tunable negative index of refraction," Journal of Applied Physics, Vol. 107, No. 1, 013507, 2010.
doi:10.1063/1.3275857
16. Hand, T. and S. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," Journal of Applied Physics, Vol. 103, No. 6, 066105, 2008.
doi:10.1063/1.2898575
17. Cummer, S., B.-I. Popa, and T. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, 2008.
doi:10.1109/TAP.2007.912959
18. Kodera, T., D. Sounas, and C. Caloz, "Artificial faraday rotation using a ring metamaterial structure without static magnetic field," Applied Physics Letters, Vol. 99, No. 3, 2011.
doi:10.1063/1.3615688
19. Jelinek, L. and J. Machac, "An fet-based unit cell for an active magnetic metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 927-930, 2011.
doi:10.1109/LAWP.2011.2167311
20. Xu, W., W. Padilla, and S. Sonkusale, "Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits," Optics Express, Vol. 20, No. 20, 22406-22411, 2012.
doi:10.1364/OE.20.022406
21. Katko, A., J. Barrett, and S. Cummer, "Time-varying transistor-based metamaterial for tunability, mixing, and efficient phase conjugation," Journal of Applied Physics, Vol. 115, No. 14, 144501, 2014.
doi:10.1063/1.4871195
22. Pozar, D., "Microwave Engineering," John Wiley and Sons, 2005.
23. Steer, M., Microwave and RF Design: A Systems Approach, SciTech Publishing Company, 2010.
24. Tsividis, Y., Operation and Modeling of the MOS Transistor, 2nd Ed., Oxford University Press, 1999.
25. Sze, S. and K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley and Sons, 2007.
26. Taur, Y. and T. Ning, "Fundamentals of Modern VLSI Devices," Cambridge University Press, 2009.
27. Lee, K., M. Shur, T. Fjeldly, and T. Ytterdal, "Semiconductor Device Modeling for VLSI," Prentice- Hall, Englewood Cliffs, NJ, 1993.
28. Cummer, S., B.-I. Popa, and T. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, 2008.
doi:10.1109/TAP.2007.912959
29. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104