Vol. 157
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-10-19
Bandwidth Tuning in Transistor Embedded Metamaterials Using Variable Resistance
By
Progress In Electromagnetics Research, Vol. 157, 49-61, 2016
Abstract
Metamaterials have been previously loaded with diodes and other types of passive circuit elements. Transistors offer an alternative to these established loading elements to expand the possible capabilities of metamaterials. With embedded transistors, additional degrees of freedom are achieved and lay out the architecture for more complex electromagnetic metamaterial design. A mathematical analysis of transistor loaded SRR unit cells is described in which the transistor acts as a variable resistor. From the mathematical analysis, we calculate transmission coefficients for a single unit cell. We then experimentally measure two SRRs with tunable quality factors and thus tunable bandwidth based upon modulating the effective loading circuit resistance to confirm the calculations. From the agreement between the calculated and measured transmission coefficients, we expand the analysis to show that a slab of more densely packed unit cells can achieve negative permeability with varying degrees of dispersion.
Citation
John P. Barrett, Alexander R. Katko, and Steven A. Cummer, "Bandwidth Tuning in Transistor Embedded Metamaterials Using Variable Resistance," Progress In Electromagnetics Research, Vol. 157, 49-61, 2016.
doi:10.2528/PIER16072005
References

1. Pendry, J., A. Holden, D. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

2. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Physical Review B, Vol. 65, 144440, 2002.
doi:10.1103/PhysRevB.65.144440

3. Schurig, D., J. Mock, and D. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681

4. Smith, D., J. Pendry, and M. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
doi:10.1126/science.1096796

5. Padilla, W., D. Basov, and D. Smith, "Negative refractive index metamaterials," Materials Today, Vol. 9, No. 78, 28-35, 2006.
doi:10.1016/S1369-7021(06)71573-5

6. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

7. Pendry, J., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

8. Freire, M., R. Marques, and L. Jelinek, "Experimental demonstration of a = 1 metamaterial lens for magnetic resonance imaging," Applied Physics Letters, Vol. 93, No. 23, 231108, 2008.
doi:10.1063/1.3043725

9. Greegor, R., C. Parazzoli, J. A. Nielsen, M. H. Tanielian, D. Vier, S. Schultz, C. Holloway, and R. Ziolkowski, "Demonstration of impedance matching using a mu-negative (mng) metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 92-95, 2009.
doi:10.1109/LAWP.2008.2011570

10. Erentok, A. and R. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 691-707, 2008.
doi:10.1109/TAP.2008.916949

11. Ziolkowski, R., P. Jin, and C.-C. Lin, "Metamaterial-inspired engineering of antennas," Proceedings of the IEEE, Vol. 99, No. 10, 1720-1731, 2011.
doi:10.1109/JPROC.2010.2091610

12. Gil, I., J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques, "Varactor-loaded split ring resonators for tunable notch filters at microwave frequencies," Electronic Letters, Vol. 40, No. 21, 1347-1348, 2004.
doi:10.1049/el:20046389

13. Reynet, O. and O. Acher, "Voltage controlled metamaterial," Applied Physics Letters, Vol. 84, No. 7, 1198-1200, 2004.
doi:10.1063/1.1646731

14. Hand, T. and S. Cummer, "Characterization of tunable metamaterial elements using mems switches," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 401-404, 2007.
doi:10.1109/LAWP.2007.902807

15. Zou, D., A. Jiang, and R.-X. Wu, "Ferromagnetic metamaterial with tunable negative index of refraction," Journal of Applied Physics, Vol. 107, No. 1, 013507, 2010.
doi:10.1063/1.3275857

16. Hand, T. and S. Cummer, "Frequency tunable electromagnetic metamaterial using ferroelectric loaded split rings," Journal of Applied Physics, Vol. 103, No. 6, 066105, 2008.
doi:10.1063/1.2898575

17. Cummer, S., B.-I. Popa, and T. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, 2008.
doi:10.1109/TAP.2007.912959

18. Kodera, T., D. Sounas, and C. Caloz, "Artificial faraday rotation using a ring metamaterial structure without static magnetic field," Applied Physics Letters, Vol. 99, No. 3, 2011.
doi:10.1063/1.3615688

19. Jelinek, L. and J. Machac, "An fet-based unit cell for an active magnetic metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 927-930, 2011.
doi:10.1109/LAWP.2011.2167311

20. Xu, W., W. Padilla, and S. Sonkusale, "Loss compensation in metamaterials through embedding of active transistor based negative differential resistance circuits," Optics Express, Vol. 20, No. 20, 22406-22411, 2012.
doi:10.1364/OE.20.022406

21. Katko, A., J. Barrett, and S. Cummer, "Time-varying transistor-based metamaterial for tunability, mixing, and efficient phase conjugation," Journal of Applied Physics, Vol. 115, No. 14, 144501, 2014.
doi:10.1063/1.4871195

22. Pozar, D., "Microwave Engineering," John Wiley and Sons, 2005.

23. Steer, M., Microwave and RF Design: A Systems Approach, SciTech Publishing Company, 2010.

24. Tsividis, Y., Operation and Modeling of the MOS Transistor, 2nd Ed., Oxford University Press, 1999.

25. Sze, S. and K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley and Sons, 2007.

26. Taur, Y. and T. Ning, "Fundamentals of Modern VLSI Devices," Cambridge University Press, 2009.

27. Lee, K., M. Shur, T. Fjeldly, and T. Ytterdal, "Semiconductor Device Modeling for VLSI," Prentice- Hall, Englewood Cliffs, NJ, 1993.

28. Cummer, S., B.-I. Popa, and T. Hand, "Q-based design equations and loss limits for resonant metamaterials and experimental validation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 127-132, 2008.
doi:10.1109/TAP.2007.912959

29. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104