Vol. 63
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-10-31
An Extended Wavenumber-Domain Algorithm Combined with Two-Step Motion Compensation for Bistatic Forward-Looking SAR
By
Progress In Electromagnetics Research Letters, Vol. 63, 85-92, 2016
Abstract
With appropriate geometry configurations, bistatic Synthetic Aperture Radar (SAR) can break through the limitations of monostatic SAR on forward-looking imaging. Thanks to such a capability, bistatic forward-looking SAR (BFSAR) has extensive potential applications. For the focusing problem of BFSAR, wavenumber-domain algorithm is accepted as the ideal solution. However, in practical application, the processing is limited because of its inability to combine the range-dependent motion compensation (MoCo). To cope with such a problem, an extended wavenumber-domain algorithm for BFSAR is derived in this paper. By modifying the reference function and mapping relationship in frequency interpolation, the extended wavenumber-domain algorithm of BFSAR integrates a two-step motion compensation. Simulation results verify the effectiveness of the proposed method.
Citation
Yuebo Zha, and Wei Pu, "An Extended Wavenumber-Domain Algorithm Combined with Two-Step Motion Compensation for Bistatic Forward-Looking SAR," Progress In Electromagnetics Research Letters, Vol. 63, 85-92, 2016.
doi:10.2528/PIERL16071304
References

1. Wu, J., J. Yang, Y. Huang, H. Yang, and H. Wang, "Bistatic forward-looking SAR: Theory and challenges," 2009 IEEE Radar Conference, 1-4, IEEE, 2009.

2. Pu, P., J. Yang, Y. Huang, H. Yang, and W. Li, "A residual range cell migration correction algorithm for SAR based on low-frequency fitting," 2015 IEEE Radar Conference, 1300-1304, IEEE, 2015.
doi:10.1109/RADAR.2015.7131196

3. Qiu, X., D. Hu, and C. Ding, "Some reflections on bistatic SAR of forward-looking configuration," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 735-739, 2008.
doi:10.1109/LGRS.2008.2004506

4. Wu, J., J. Yang, Y. Huang, and H. Yang, "Focusing bistatic forward-looking SAR using chirp scaling algorithm," 2011 IEEE Radar Conference (RADAR), 1036-1039, IEEE, 2011.
doi:10.1109/RADAR.2011.5960693

5. Li, Z., J. Wu, W. Li, Y. Huang, and J. Yang, "One-stationary bistatic side-looking sar imaging algorithm based on extended keystone transforms and nonlinear chirp scaling," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 2, 211-215, 2013.
doi:10.1109/LGRS.2012.2198611

6. Wu, J., Z. Li, Y. Huang, J. Yang, H. Yang, and Q. H. Liu, "Focusing bistatic forward-looking SAR with stationary transmitter based on keystone transform and nonlinear chirp scaling," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 1, 148-152, Jan. 2014.
doi:10.1109/LGRS.2013.2250904

7. Shin, H.-S. and J.-T. Lim, "Omega-k algorithm for airborne forward-looking bistatic spotlight SAR imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 2, 312-316, 2009.
doi:10.1109/LGRS.2008.2011924

8. Reigber, A., E. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 153, No. 3, 301-310, Jun. 2006.
doi:10.1049/ip-rsn:20045087

9. Loffeld, O., H. Nies, V. Peters, and S. Knedlik, "Models and useful relations for bistatic SAR processing," GIEEE Transactions on eoscience and Remote Sensing, Vol. 42, No. 10, 2031-2038, Oct. 2004.
doi:10.1109/TGRS.2004.835295

10. Neo, Y. L., F.Wong, and I. G. Cumming, "A two-dimensional spectrum for bistatic SAR processing using series reversion," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 93-96, 2007.
doi:10.1109/LGRS.2006.885862

11. Liu, H., T. Wang, Q. Wu, and Z. Bao, "Bistatic SAR data focusing using an Omega-k algorithm based on method of series reversion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2899-2912, 2009.
doi:10.1109/TGRS.2009.2017522

12. Yang, J., Y. Huang, H. Yang, J. Wu, W. Li, Z. Li, and X. Yang, "A first experiment of airborne bistatic forward-looking SAR --- Preliminary results," Proc. IGARSS, 4202-4204, Melbourne, VIC, Jul. 2013.