Vol. 65
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-12-20
A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array
By
Progress In Electromagnetics Research Letters, Vol. 65, 15-21, 2017
Abstract
In this paper, a new analysis method of broadcast beamforming for a massive MIMO antenna array, targeting at the fifth generation mobile communication, is introduced. In order to solve the problem of narrow broadcast beam coverage, the element phase of massive MIMO antenna array is optimized using a method, which combines both numerical electromagnetic analysis method and global optimization algorithm. The analysis results show that the optimal value of 3 dB broadcast beam width for 64 elements in the horizontal plane is 36 degree, which is 0.55 times of that of the 4G base station. In addition, the optimal value of gain loss increases to about 13 dB compared with the gain of the antenna fed with equal amplitude and in phase. So it is also necessary to take the system link budget of the broadcast channel into consideration. The proposed analysis method and design solution can provide reference for the research of the next generation mobile communication.
Citation
Hong-Wei Yuan, Guan-Feng Cui, and Jin Fan, "A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array," Progress In Electromagnetics Research Letters, Vol. 65, 15-21, 2017.
doi:10.2528/PIERL16063005
References

1. Marcus, M. J., "5G and IMT for 2020 and beyond," Spectrum Policy and Regulatory Issues. IEEE Wireless Communications, Vol. 22, No. 4, 2-3, 2015.
doi:10.1109/MWC.2015.7224717

2. Liu, G. and D. Jiang, "5G: Vision and requirements for mobile communication system towards year 2020,", Vol. 2016, 1-8, 2016.

3. Lu, L., G. Y. Li, A. L. Swindlehurst, et al. "An overview of massive MIMO: Benefits and challenges," IEEE Journal of Selected Topics in Signal Processing, Vol. 8, No. 5, 742-758, 2014.
doi:10.1109/JSTSP.2014.2317671

4. Li, Y., et al. "An enhanced beamforming algorithm for three dimensional MIMO in LTE-advanced networks," 2013 International Conference on Wireless Communications & Signal Processing (WCSP), 1-5, 2013.

5. Yilmaz, O. N. C., S. Hamalainen, and J. Hamalainen, "Analysis of antenna parameter optimization space for 3GPP LTE," IEEE Vehicular Technology Conference Fall, 1-5, 2009.

6. Pang, X., W. Hong, T. Yang, et al. "Design and implementation of an active multibeam antenna system with 64 RF channels and 256 antenna elements for massive MIMO application in 5G wireless communications," Wireless Communication Over Zigbee for Automotive Inclination Measurement China Communications, Vol. 11, 16-23, 2014.

7. Hoydis, J., S. Ten Brink, and M. Debbah, "Massive MIMO: How many antennas do we need," 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 545-550, IEEE, 2011.
doi:10.1109/Allerton.2011.6120214

8. Nam, Y. H., et al. "Full-dimension MIMO (FD-MIMO) for next generation cellular technology," IEEE Communications Magazine, Vol. 51, 172-179, 2013.
doi:10.1109/MCOM.2013.6525612

9. Ma, R., et al. "Dual-polarized turning torso antenna array for massive MIMO systems," IEEE European Conference on Antennas and Propagation, 2015.

10. Panzner, B., et al. "Deployment and implementation strategies for massive MIMO in 5G," 2014 IEEE Globecom Workshops (GC Wkshps), 346-351, 2015.

11. Niyato, D., et al. "Competitive cell association and antenna allocation in 5G massive MIMO networks," IEEE International Conference on Communications, 2015.

12. Gao, X., et al. "Antenna selection in measured massive MIMO channels using convex optimization," 2013 IEEE Globecom Workshops (GC Wkshps), 129-134, 2013.

13. Jin, S., et al. "Zero-forcing beamforming in massive MIMO systems with time-shifted pilots," IEEE International Conference on Communications, 4801-4806, 2014.

14. Qu, Y., G. Liao, S.-Q. Zhu, X.-Y. Liu, and H. Jiang, "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
doi:10.2528/PIER08062306

15. Mouhamadou, M., P. Vaudon, and M. Rammal, "Smart antenna array patterns synthesis: Null steering and multi-user beamforming by phase control," Progress In Electromagnetics Research, Vol. 60, 95-106, 2006.
doi:10.2528/PIER05112801

16. Xiao, Y., et al. "Performance analysis of smart antenna array with mono-and dual-polarization in TD-LTE system," Journal of China Academy of Electronics and Information Technology, 151-154, 2010.

17. Marzetta, T. L., "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Wireless Communications, Vol. 9, No. 11, 3590-3600, Nov. 2010.
doi:10.1109/TWC.2010.092810.091092

18. Shepard, C., H. Yu, N. Anand, L. E. Li, T. L. Marzetta, R. Yang, and L. Zhong, "Argos: Practical many-antenna base stations," Proc. ACM Int. Conf. Mobile Computing and Networking (MobiCom), Aug. 2012.

19. Yatskevich, V. and Y. Bulikov, "Method of eliminating interference noughts of radiation pattern of base station antenna array,", 2003.