Vol. 50
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-09-20
Analysis of the Magnetic Field Homogeneity for an Equilateral Triangular Helmholtz Coil
By
Progress In Electromagnetics Research M, Vol. 50, 75-83, 2016
Abstract
This paper presents a mathematical analysis of the magnetic field homogeneity for an Equilateral Triangular Helmholtz (ETH) coil. The magnetic field analysis is based on the Biot-Savart law in which a Taylor series approximation is performed to obtain the analytical distance that complies with the Helmholtz condition between the pair of coils. This is done to compare the magnetic field distributions of the ETH and the Circular Helmholtz (CH) coils for the parameters side length (2a, 3a) and radius (a) respectively. Furthermore, an approximate expression of the magnetic field homogeneity with regard to the side length parameter is obtained and finally a computational model of the ETH coil using COMSOL® is performed in order to validate the calculated and experimental results. The results show that the ETH coils have a lower magnetic field homogeneity than the CH coils for the described parameters, and the implementation of either one basically depends on the application specifications.
Citation
Andres Fernando Restrepo Alvarez, Edinson Franco Mejia, Hector Cadavid Ramirez, and Carlos Rafael Pinedo Jaramillo, "Analysis of the Magnetic Field Homogeneity for an Equilateral Triangular Helmholtz Coil," Progress In Electromagnetics Research M, Vol. 50, 75-83, 2016.
doi:10.2528/PIERM16062309
References

1. De Seze, R., A. Lahitte, J. M. Moreau, and B. Veyret, "Generation of extremely-low frequency magnetic fields with standard available commercial equipment: Implications for experimental bioelectromagnetics work," Bioelectrochem. Bioenerg., Vol. 35, No. 1-2, 127-131, 1994.
doi:10.1016/0302-4598(94)87023-3

2. Farina, M., M. A. Mariggio, T. Pietrangelo, J. J. Stupak, A. Morini, and G. Fano, "ELF-EMFs induced effects on cell lines: Controlling ELF generation in laboratory," Progress In Electromagnetics Research B, Vol. 24, 131-153, 2010.
doi:10.2528/PIERB10061709

3. Satav, S. M. and V. Agarwal, "Design and development of a low-cost digital magnetic field meter with wide dynamic range for EMC precompliance measurements and other applications," IEEE Trans. Instrum. Meas., Vol. 58, No. 8, 2837-2846, 2009.
doi:10.1109/TIM.2009.2016367

4. Forte, G. O., G. Farrher, L. R. Canali, and E. Anoardo, "Automatic shielding-shimming magnetic field compensator for excluded volume applications," IEEE Trans. Control Syst. Technol., Vol. 18, No. 4, 976-983, 2010.
doi:10.1109/TCST.2009.2030174

5. Schuderer, J., W. Oesch, N. Felber, D. Spät, and N. Kuster, "In vitro exposure apparatus for ELF magnetic fields," Bioelectromagnetics, Vol. 25, No. 8, 582-591, 2004.
doi:10.1002/bem.20037

6. Alamgir, A. K., J. Fang, C. Gu, and Z. Han, "Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes," Physica C: Superconductivity, Vol. 424, No. 1-2, 17-24, 2005.
doi:10.1016/j.physc.2005.04.019

7. Martino, C. F., L. Portelli, K. McCabe, M. Hernandez, and F. Barnes, "Reduction of the Earths magnetic field inhibits growth rates of model cancer cell lines," Bioelectromagnetics, Vol. 31, No. 8, 649-655, 2010.
doi:10.1002/bem.20606

8. Kirschvink, J. L., "Uniform magnetic fields and double-wrapped coil systems: Improved techniques for the design of bioelectromagnetic experiments," Bioelectromagnetics, Vol. 13, No. 5, 401-411, 1992.
doi:10.1002/bem.2250130507

9. Nouri, N. and B. Plaster, "Comparison of magnetic field uniformities for discretized and finite-sized standard cos, solenoidal, and spherical coils," Nucl. Instr. Meth. Phys. Res. A, Vol. 723, 30-35, 2013.
doi:10.1016/j.nima.2013.05.013

10. Pittman, M. E. and D. L. Waidelich, "Three and four coil systems for homogeneous magnetic fields," IEEE Trans. Aerosp., Vol. 2, No. 1, 36-45, 1964.
doi:10.1109/TA.1964.4319555

11. Herceg, D., A. Juhas, and M. Milutinov, "A design of a four square coil system for a biomagnetic experiment," Facta Universitatis Series: Electronics and Energetics, Vol. 22, No. 3, 285-292, 2009.
doi:10.2298/FUEE0903285H

12. Azpúrua, M. A., "A semi-analytical method for the design of coil-systems for homogeneous magnetostatic field generation," Progress In Electromagnetics Research B, Vol. 37, 171-189, 2012.
doi:10.2528/PIERB11102606

13. Restrepo, A. F., E. Franco, and C. R. Pinedo, "A design and implementation methodology of a system to generate uniform magnetic field volume with tri-axial square Helmholtz coils," Inf. Tecnol., Vol. 25, No. 2, 3-14, 2014.
doi:10.4067/S0718-07642014000200002

14. Haghnegahdar, A., H. Khosrovpanah, A. Andisheh-Tadbir, G. Mortazavi, M. Saeedi, S. M. Mortazavi, A. Zamani, M. Haghani, M. Shojaei, and H. Parsaei, "Design and fabrication of Helmholtz coils to study the effects of pulsed electromagnetic fields on the healing process in periodontitis: Preliminary animal results," J. Biomed. Phys. Eng., Vol. 4, No. 3, 83-90, 2014.

15. Enoki, S., T. Asahi, S. Watanabe, T. Mizuno, and K. Takeshita, "Electromagnetic measurement of the rail displacement by two triangular coils," IEEE Trans. Magn., Vol. 38, No. 5, 3303-3305, 2002.
doi:10.1109/TMAG.2002.802297

16. Choi, H., S. Jeong, C. Lee, B. Park, S. Ko, J.-O. Park, and S. Park, "Three-dimensional swimming tadpole mini-robot using three-axis Helmholtz coils," Int. J. Control Autom., Vol. 12, No. 3, 662-669, 2014.
doi:10.1007/s12555-013-0378-0

17. Hossain, A. B., M. H. Cho, and S. Y. Lee, "Magnetic nanoparticle density mapping from the magnetically induced displacement data: A simulation study," Biomed. Eng. Online, Vol. 11, No. 1, 13, 2012.
doi:10.1186/1475-925X-11-11

18. Cao, Q., X. Han, B. Zhang, and L. Li, "Analysis and optimal design of magnetic navigation system using Helmholtz and Maxwell coils," IEEE Trans. Appl. Supercond., Vol. 22, No. 3, 4401504, 2012.
doi:10.1109/TASC.2011.2174583

19. Go, G., H. Choi, S. Jeong, C. Lee, S. Y. Ko, J.-O. Park, and S. Park, "Electromagnetic navigation system using simple coil structure (4 coils) for 3-D locomotive microrobot," IEEE Trans. Magn., Vol. 51, No. 4, 1-7, 2015.

20. Ha, Y. H., B. H. Han, and S. Y. Lee, "Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil," Med. Biol. Eng. Comput., Vol. 48, No. 2, 139-145, 2010.
doi:10.1007/s11517-009-0574-5

21. Bell, G. B. and A. A. Marino, "Exposure system for production of uniform magnetic fields," Journal of Bioelectricity, Vol. 8, No. 2, 147-158, 1989.
doi:10.3109/15368378909020953

22. Al-Sowayan, S., "Generation of homogenous magnetic field using equilateral triangular coils," Int. J. Appl. Eng. Res., Vol. 9, No. 1, 137-143, 2014.

23. Kdzia, P., T. Czechowski, M. Baranowski, J. Jurga, and E. Szczesniak, "Analysis of uniformity of magnetic field generated by the two-pair coil system," Appl. Magn. Reson., Vol. 44, No. 5, 605-618, 2013.
doi:10.1007/s00723-012-0427-5

24. Beiranvand, R., "Analyzing the uniformity of the generated magnetic field by a practical one-dimensional Helmholtz coils system," Rev. Sci. Instrum., Vol. 84, No. 7, 075109, 2013.
doi:10.1063/1.4813275

25. Restrepo, A. F., L. J. Martinez, C. R. Pinedo, E. Franco, and H. Cadavid, "Design study for a cellular culture bioreactor coupled with a magnetic stimulation system," IEEE Lat. Am. T., Vol. 11, No. 1, 130-136, 2013.
doi:10.1109/TLA.2013.6502791

26. Wang, J., S. She, and S. Zhang, "An improved Helmholtz coil and analysis of its magnetic field homogeneity," Rev. Sci. Instrum., Vol. 73, No. 5, 2175-2179, 2002.
doi:10.1063/1.1471352