1. De Seze, R., A. Lahitte, J. M. Moreau, and B. Veyret, "Generation of extremely-low frequency magnetic fields with standard available commercial equipment: Implications for experimental bioelectromagnetics work," Bioelectrochem. Bioenerg., Vol. 35, No. 1-2, 127-131, 1994.
doi:10.1016/0302-4598(94)87023-3
2. Farina, M., M. A. Mariggio, T. Pietrangelo, J. J. Stupak, A. Morini, and G. Fano, "ELF-EMFs induced effects on cell lines: Controlling ELF generation in laboratory," Progress In Electromagnetics Research B, Vol. 24, 131-153, 2010.
doi:10.2528/PIERB10061709
3. Satav, S. M. and V. Agarwal, "Design and development of a low-cost digital magnetic field meter with wide dynamic range for EMC precompliance measurements and other applications," IEEE Trans. Instrum. Meas., Vol. 58, No. 8, 2837-2846, 2009.
doi:10.1109/TIM.2009.2016367
4. Forte, G. O., G. Farrher, L. R. Canali, and E. Anoardo, "Automatic shielding-shimming magnetic field compensator for excluded volume applications," IEEE Trans. Control Syst. Technol., Vol. 18, No. 4, 976-983, 2010.
doi:10.1109/TCST.2009.2030174
5. Schuderer, J., W. Oesch, N. Felber, D. Spät, and N. Kuster, "In vitro exposure apparatus for ELF magnetic fields," Bioelectromagnetics, Vol. 25, No. 8, 582-591, 2004.
doi:10.1002/bem.20037
6. Alamgir, A. K., J. Fang, C. Gu, and Z. Han, "Square Helmholtz coil with homogeneous field for magnetic measurement of longer HTS tapes," Physica C: Superconductivity, Vol. 424, No. 1-2, 17-24, 2005.
doi:10.1016/j.physc.2005.04.019
7. Martino, C. F., L. Portelli, K. McCabe, M. Hernandez, and F. Barnes, "Reduction of the Earths magnetic field inhibits growth rates of model cancer cell lines," Bioelectromagnetics, Vol. 31, No. 8, 649-655, 2010.
doi:10.1002/bem.20606
8. Kirschvink, J. L., "Uniform magnetic fields and double-wrapped coil systems: Improved techniques for the design of bioelectromagnetic experiments," Bioelectromagnetics, Vol. 13, No. 5, 401-411, 1992.
doi:10.1002/bem.2250130507
9. Nouri, N. and B. Plaster, "Comparison of magnetic field uniformities for discretized and finite-sized standard cos, solenoidal, and spherical coils," Nucl. Instr. Meth. Phys. Res. A, Vol. 723, 30-35, 2013.
doi:10.1016/j.nima.2013.05.013
10. Pittman, M. E. and D. L. Waidelich, "Three and four coil systems for homogeneous magnetic fields," IEEE Trans. Aerosp., Vol. 2, No. 1, 36-45, 1964.
doi:10.1109/TA.1964.4319555
11. Herceg, D., A. Juhas, and M. Milutinov, "A design of a four square coil system for a biomagnetic experiment," Facta Universitatis Series: Electronics and Energetics, Vol. 22, No. 3, 285-292, 2009.
doi:10.2298/FUEE0903285H
12. Azpúrua, M. A., "A semi-analytical method for the design of coil-systems for homogeneous magnetostatic field generation," Progress In Electromagnetics Research B, Vol. 37, 171-189, 2012.
doi:10.2528/PIERB11102606
13. Restrepo, A. F., E. Franco, and C. R. Pinedo, "A design and implementation methodology of a system to generate uniform magnetic field volume with tri-axial square Helmholtz coils," Inf. Tecnol., Vol. 25, No. 2, 3-14, 2014.
doi:10.4067/S0718-07642014000200002
14. Haghnegahdar, A., H. Khosrovpanah, A. Andisheh-Tadbir, G. Mortazavi, M. Saeedi, S. M. Mortazavi, A. Zamani, M. Haghani, M. Shojaei, and H. Parsaei, "Design and fabrication of Helmholtz coils to study the effects of pulsed electromagnetic fields on the healing process in periodontitis: Preliminary animal results," J. Biomed. Phys. Eng., Vol. 4, No. 3, 83-90, 2014.
15. Enoki, S., T. Asahi, S. Watanabe, T. Mizuno, and K. Takeshita, "Electromagnetic measurement of the rail displacement by two triangular coils," IEEE Trans. Magn., Vol. 38, No. 5, 3303-3305, 2002.
doi:10.1109/TMAG.2002.802297
16. Choi, H., S. Jeong, C. Lee, B. Park, S. Ko, J.-O. Park, and S. Park, "Three-dimensional swimming tadpole mini-robot using three-axis Helmholtz coils," Int. J. Control Autom., Vol. 12, No. 3, 662-669, 2014.
doi:10.1007/s12555-013-0378-0
17. Hossain, A. B., M. H. Cho, and S. Y. Lee, "Magnetic nanoparticle density mapping from the magnetically induced displacement data: A simulation study," Biomed. Eng. Online, Vol. 11, No. 1, 13, 2012.
doi:10.1186/1475-925X-11-11
18. Cao, Q., X. Han, B. Zhang, and L. Li, "Analysis and optimal design of magnetic navigation system using Helmholtz and Maxwell coils," IEEE Trans. Appl. Supercond., Vol. 22, No. 3, 4401504, 2012.
doi:10.1109/TASC.2011.2174583
19. Go, G., H. Choi, S. Jeong, C. Lee, S. Y. Ko, J.-O. Park, and S. Park, "Electromagnetic navigation system using simple coil structure (4 coils) for 3-D locomotive microrobot," IEEE Trans. Magn., Vol. 51, No. 4, 1-7, 2015.
20. Ha, Y. H., B. H. Han, and S. Y. Lee, "Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil," Med. Biol. Eng. Comput., Vol. 48, No. 2, 139-145, 2010.
doi:10.1007/s11517-009-0574-5
21. Bell, G. B. and A. A. Marino, "Exposure system for production of uniform magnetic fields," Journal of Bioelectricity, Vol. 8, No. 2, 147-158, 1989.
doi:10.3109/15368378909020953
22. Al-Sowayan, S., "Generation of homogenous magnetic field using equilateral triangular coils," Int. J. Appl. Eng. Res., Vol. 9, No. 1, 137-143, 2014.
23. Kdzia, P., T. Czechowski, M. Baranowski, J. Jurga, and E. Szczesniak, "Analysis of uniformity of magnetic field generated by the two-pair coil system," Appl. Magn. Reson., Vol. 44, No. 5, 605-618, 2013.
doi:10.1007/s00723-012-0427-5
24. Beiranvand, R., "Analyzing the uniformity of the generated magnetic field by a practical one-dimensional Helmholtz coils system," Rev. Sci. Instrum., Vol. 84, No. 7, 075109, 2013.
doi:10.1063/1.4813275
25. Restrepo, A. F., L. J. Martinez, C. R. Pinedo, E. Franco, and H. Cadavid, "Design study for a cellular culture bioreactor coupled with a magnetic stimulation system," IEEE Lat. Am. T., Vol. 11, No. 1, 130-136, 2013.
doi:10.1109/TLA.2013.6502791
26. Wang, J., S. She, and S. Zhang, "An improved Helmholtz coil and analysis of its magnetic field homogeneity," Rev. Sci. Instrum., Vol. 73, No. 5, 2175-2179, 2002.
doi:10.1063/1.1471352