Vol. 63
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-11-02
Temperature Coefficient Measurement of Microwave Dielectric Materials Using Closed Cavity Method
By
Progress In Electromagnetics Research Letters, Vol. 63, 93-97, 2016
Abstract
The closed cavity method is proposed to measure the frequency temperature coefficient (τf) of a dielectric resonator. The τf polynomial, which is linear combination of the temperature coefficient of relative dielectric constant and the linear expansion coefficient of the dielectric and cavity, is given. The coefficients of τf polynomial are discussed in detail. The intrinsic temperature coefficient of resonant frequency (τf0) is introduced to improve the measurement precision. Resonators made of BaO-TiO2-Sm2O3 and (Zr0.8Ti0.2)TiO4 ceramics with Teflon and alumina as supports were measured. The results show that the τf values of the same resonator with above supports are different, and the measured variation between them is more than 3 ppm/˚C. Using the concept of τf0, the variation is less than 2 ppm/˚C.
Citation
Liangzu Cao, Jun-Mei Yan, and Lixia Yin, "Temperature Coefficient Measurement of Microwave Dielectric Materials Using Closed Cavity Method," Progress In Electromagnetics Research Letters, Vol. 63, 93-97, 2016.
doi:10.2528/PIERL16061507
References

1. Fiedziuszko, S. J., I. C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S. N. Stitzer, and K. Wakino, "Dielectric materials, devices and circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 706-720, Mar. 2002.
doi:10.1109/22.989956

2. Kobayashi, Y., Y. Kogami, and M. Katoh, "A method of evaluating the temperature dependence of dielectric resonators and materials," Proc. of 23th European Microwave Conference, 562-563, Sep. 1993.

3. Abramowicz, A. and J. Modelski, "Accurate method of measuring the temperature coefficients of dielectric resonator materials," 21st European Microwave Conference, 1391-1396, 1991.

4. Nishikawa, T., K. Wakino, H. Tamura, H. Tanaka, and Y. Ishikawa, "Precise measurement method for temperature of dielectric resonator material," IEEE MTT-S Int. Microwave Symp. Digest, No. J-6, 277-280, 1987.

5. Nikawa, Y. and Y. Guan, "Dynamic measurement of temperature dependent complex permittivity of material by microwave heating using cylindrical cavity resonator," Proceedings of Asia-Pacific Microwave Conference, 1-4, 2007.

6. Tobar, M. E., G. L. Hamilton, J. G. Hartnett, E. N. Ivanov, D. Cros, and P. Guillon, "Accurate characterization of the temperature coefficients of permittivity of sapphire utilizing the dual-mode frequency locked technique," Proceedings of the 2003 IEEE International Frequency Control Symposium, 365-370, 2013.

7. Silva, M. A. S., T. S. M. Fernandes, and A. S. B. Sombra, "An alternative method for the measurement of the microwave temperature coefficient of resonant frequency (τf)," Journal of Applied Physics, Vol. 112, 074106-1-7, 2012.

8. Krupka, J., "Resonant modes in shielded cylindrical ferrite and single-crystal dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, 691-697, 1989.
doi:10.1109/22.18841

9. Sheen, J., "Microwave measurements of dielectric properties using a closed cylindrical cavity dielectric resonator," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 5, 1139-1144, 2007.
doi:10.1109/TDEI.2007.4339473

10. Kafjez, D. and P. Guillon, Dielectric Resonators, Artech House, 1986.