Vol. 49
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-08-23
Statistical Design Centering Optimization of 1D Photonic Crystal Filters
By
Progress In Electromagnetics Research M, Vol. 49, 153-165, 2016
Abstract
A statistical design centering approach is introduced, to achieve the optimal design center point of one-dimensional photonic crystal-based filters which are parts of several optoelectronic systems. Up to our knowledge, it is the first time that a design centering approach is applied to such a design problem. The proposed approach seeks nominal designable parameter values that maximize the probability of satisfying the design specifications (yield function). Thus, the achieved optimal design center point is much more robust to unavoidable designable parameter variations, occurring during fabrication process, for example. The yield maximization problem is formulated as an unconstrained optimization problem solved by derivative-free based-algorithm (NEWUOA) coupled with a variance reduction yield estimator to reduce large number of required system simulations. The flexibility and efficiency of the proposed design centering approach are demonstrated by two practical examples: band pass optical filter and spectral control filter. A comparison with Minimax optimization technique is also given.
Citation
Abdel-Karim S. O. Hassan, Ahmed Sayed Mohamed, Mahmoud M. Taha, and Nadia H. Rafat, "Statistical Design Centering Optimization of 1D Photonic Crystal Filters," Progress In Electromagnetics Research M, Vol. 49, 153-165, 2016.
doi:10.2528/PIERM16061203
References

1. John, S. and K. Busch, "Photonic bandgap formation and tunability in certain self-organizing systems," J. Lightwave Technology, Vol. 17, No. 11, 1931-1943, 1999.
doi:10.1109/50.802976

2. Lee, C., R. Radhakrishnan, C.-C. Chen, J. Li, J. Thillaigovindan, and N. Balasubramanian, "Design and modeling of a nanomechanical sensor using silicon photonic crystals," J. Lightwave Technology, Vol. 26, No. 7, 839-846, 2008.
doi:10.1109/JLT.2007.915273

3. Prather, D. W., Photonic Crystals, Theory, Applications and Fabrication, John Wiley & Sons, 2009.

4. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 2011.

5. Celanovic, I., F. O. Sullivan, M. Ilak, J. Kassakian, and D. Perreault, "Design and optimization of one dimensional photonic crystals for thermophotovoltaic applications," Optics Letters, Vol. 29, No. 8, 863-865, 2004.
doi:10.1364/OL.29.000863

6. Del Villar, I., I. R. Matias, and F. J. Arregui, "Fiber-optic multiple-wavelength filter based on one-dimensional photonic bandgap structures with defects," J. Lightwave Technology, Vol. 22, No. 6, 1615-1621, 2004.
doi:10.1109/JLT.2004.827668

7. Kurt, H. and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Applied Physics Letters, Vol. 87, No. 4, 041108-041108, 2005.
doi:10.1063/1.1999861

8. Chubb, D., Fundamentals of Thermophotovoltaic Energy Conversion, Elsevier, 2007.

9. Swillam, M. A., M. H. Bakr, and X. Li, "The design of multilayer optical coatings using convex optimization," J. Lightwave Technology, Vol. 25, No. 4, 1078-1085, 2007.
doi:10.1109/JLT.2007.891457

10. Baedi, J., H. Arabshahi, M. G. Armaki, and E. Hosseini, "Optical design of multilayer filter by using pso algorithm," Research Journal of Applied Sciences, Engineering and Technology, Vol. 2, No. 1, 56-59, 2010.

11. Xu, J., "Optimization of construction of multiple one dimensional photonic crystals to extend bandgap by genetic algorithm," J. Lightwave Technology, Vol. 28, No. 7, 1114-1120, 2010.
doi:10.1109/JLT.2009.2039194

12. Rafat, N. H., S. A. El-Naggar, and S. I. Mostafa, "Modeling of a wide band pass optical filter based on 1d ternary dielectric-metallic-dielectric photonic crystals," J. Optics, Vol. 13, No. 8, 085101, 2011.
doi:10.1088/2040-8978/13/8/085101

13. Jia, W., J. Deng, B. P. L. Reid, X. Wang, C. Chan, H. Wu, X. Li, R. A. Taylor, and A. J. Danner, "Design and fabrication of optical filters with very large stopband (500 nm) and small passband (1 nm) in silicon-on insulator," Photonics and Nanostructures-Fundamentals and Applications, Vol. 10, No. 4, 447-451, 2012.

14. Mostafa, S. I., N. H. Rafat, and S. A. El-Naggar, "One-dimensional metallic-dielectric (Ag/Sio2) photonic crystals filter for thermophotovoltaic applications," Renewable Energy, Vol. 45, 245-250, 2012.
doi:10.1016/j.renene.2012.03.001

15. Badaoui, H. A. and M. Abri, "One-dimensional photonic crystal selective filters design using simulated annealing optimization technique," Progress In Electromagnetics Research B, Vol. 53, 107-129, 2013.
doi:10.2528/PIERB13052503

16. Hassan, A. S. O., A. S. A. Mohamed, M. M. T. Maghrabi, and N. H. Rafat, "Optimal design of one-dimensional photonic crystal filters using minimax optimization approach," Applied Optics, Vol. 54, No. 6, 1399-1409, 2015.
doi:10.1364/AO.54.001399

17. Asghar, M. H., M. Shoaib, F. Placido, and S. Naseem, "Wide bandpass optical filters with TiO2 and Ta2O5," Cent. Eur. J. Phys., Vol. 6, No. 4, 853-863, 2008.

18. Hassan, A. S. O. and A. S. A. Mohamed, "Surrogate-based circuit design centering," Surrogate-Based Modeling and Optimization, 27-49, Springer, 2013.
doi:10.1007/978-1-4614-7551-4_2

19. Zaabab, A. H., Q.-J. Zhang, and M. Nakhla, "A neural network modelling approach to circuit optimization and statistical design," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 6, 1349-1358, 1995.
doi:10.1109/22.390193

20. Keramat, M. and R. Kielbasa, "A study of stratified sampling in variance reduction techniques for parametric yield estimation," IEEE Trans Circuits and Systems II: Analog and Digital Signal Processing, Vol. 45, No. 5, 575-583, 1998.

21. Hassan, A. S. O., H. L. Abdel-Malek, and A. A. Rabie, "Non-derivative design centering algorithm using trust region optimization and variance reduction," Eng. Opt., Vol. 38, No. 1, 37-51, 2006.
doi:10.1080/03052150500323880

22. Hassan, A. S. O., A. S. A. Mohamed, and A. Y. El-Sharabasy, "EM-based yield optimization exploiting trust region optimization and space mapping technology," Int. J. RF and Microwave Computer-Aided Engineering, Vol. 25, No. 6, 474-484, 2015.
doi:10.1002/mmce.20878

23. Powell, M. J. D., The Newuoa Software for Unconstrained Optimization Without Derivatives. Large-scale Nonlinear Optimization, 255-297, Springer, 2006.
doi:10.1007/0-387-30065-1_16

24. Powell, M. J. D., "A view of algorithms for optimization without derivatives," Mathematics Today-Bulletin of the Institute of Mathematics and its Applications, Vol. 43, No. 5, 170-174, 2007.

25. McKay, M. D., R. J. Beckman, and W. J. Conover, "Comparison of three methods for selecting values of input variables in the analysis of output from a computer code," Technometrics, Vol. 21, No. 2, 239-245, 1979.

26. Metropolis, N. and S. Ulam, "The monte carlo method," J. the American Statistical Association, Vol. 44, No. 247, 335-341, 1949.
doi:10.1080/01621459.1949.10483310

27. Hocevar, D. E., M. R. Lightner, and T. N. Trick, "A study of variance reduction techniques for estimating circuit yields," IEEE Trans Computer-Aided Design of Integrated Circuits and Systems, Vol. 2, No. 3, 180-192, 1983.
doi:10.1109/TCAD.1983.1270035

28. Pendry, J., "Photonic band structures," J. Modern Optics, Vol. 41, No. 2, 209-229, 1994.
doi:10.1080/09500349414550281

29. Ni, X., Z. Liu, and A. V. Kildishev, PhotonicsDB: Optical Constants, 2010, http://nanohub.org/resources/PhotonicsDB/usage.