Vol. 62
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-09-02
Quasi-Static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth's Surface
By
Progress In Electromagnetics Research Letters, Vol. 62, 29-34, 2016
Abstract
In this work, an analytical expression is derived for the radial distribution of the quasi-static vertical magnetic field of a current-carrying large circular loop placed on a homogeneous earth. The obtained expression results from applying a rigorous procedure, which leads to cast the Hankel transform describing the vertical magnetic field component into a form consisting of two elliptic integrals and a fast-convergent sum of spherical Hankel functions. The derived solution ensures the same degree of accuracy as the finite difference time domain method, but, as a purely analytical formula, has the advantage of requiring less computational time. Numerical results are presented to illustrate the validity of the developed formulation.
Citation
Mauro Parise, "Quasi-Static Vertical Magnetic Field of a Large Horizontal Circular Loop Located at the Earth's Surface," Progress In Electromagnetics Research Letters, Vol. 62, 29-34, 2016.
doi:10.2528/PIERL16053003
References

1. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, 2009.

2. Parise, M., "Exact electromagnetic field excited by a vertical magnetic dipole on the surface of a lossy half-space," Progress In Electromagnetics Research B, Vol. 23, 69-82, 2010.
doi:10.2528/PIERB10060707

3. Parise, M., "An exact series representation for the EM field from a circular loop antenna on a lossy half-space," IEEE Antennas and Wireless Prop. Letters, Vol. 13, 23-26, 2014.
doi:10.1109/LAWP.2013.2296149

4. Parise, M., "Fast computation of the forward solution in controlled-source electromagnetic sounding problems," Progress In Electromagnetics Research, Vol. 111, 119-139, 2011.
doi:10.2528/PIER10101409

5. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, 1986.

6. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

7. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, No. 1, 181-200, 2005.
doi:10.1007/s00024-004-2586-2

8. Ward, S. H. and G. W. Hohmann, "Electromagnetic theory for geophysical applications," Electromagnetic Methods in Applied Geophysics, Theory, Vol. 1, 131-308, edited by M. N. Nabighian, SEG, Tulsa, Oklahoma, 1988.

9. Werner, D. H., "An exact integration procedure for vector potentials of thin circular loop antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 157-165, 1996.
doi:10.1109/8.481642

10. Palacky, G. J., "Resistivity characteristics of geologic targets," Electromagnetic Methods in Applied Geophysics, Vol. 1, 52-129, M. N. Nabighian, Ed., SEG, Tulsa, Oklahoma, 1988.

11. Parise, M. and S. Cristina, "High-order electromagnetic modeling of shortwave inductive diathermy effects," Progress In Electromagnetics Research, Vol. 92, 235-253, 2009.
doi:10.2528/PIER09022608

12. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1667-1677, 2011.
doi:10.1163/156939311797164945

13. Parise, M., "A study on energetic efficiency of coil antennas used for RF diathermy," IEEE Antennas and Wireless Prop. Letters, Vol. 10, 385-388, 2011.
doi:10.1109/LAWP.2011.2148190

14. Parise, M., "An exact series representation for the EM field from a vertical electric dipole on an imperfectly conducting half-space," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 8, 932-942, 2014.
doi:10.1080/09205071.2014.897653

15. Erdelyi, A., Tables of Integral Transforms, Vol. 2, McGraw-Hill, 1954.

16. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, 1964.