Vol. 70
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-10-27
Investigation of Alignment Errors on Multi-Static Microwave Imaging Based on Frequency-Diverse Metamaterial Apertures
By
Progress In Electromagnetics Research B, Vol. 70, 101-112, 2016
Abstract
We examine the effect of alignment errors on the performance of a frequency-diverse imaging system composed of metamaterial apertures. In a frequency-diverse imaging system, a sequence of distinct radiation patterns, indexed by frequency, provides measurements of the spatial content of a scene. This set of measurements can then be used to obtain a high-fidelity estimate of the scene using computational imaging techniques. As with any computational imaging system, realizing the full potential of the frequency-diverse system requires accurate characterization of the complex radiation patterns. This characterization entails precise knowledge of the locations and orientations of the transmitters and receivers; any discrepancy between the modeled and actual locations will introduce phase error and degrade the quality of image reconstructions. Here, we study the effect of various misalignment errors on the performance of a sparse, bistatic, frequency diverse imaging system and provide an estimate on the levels of error within which the frequency-diverse apertures can reconstruct high quality images. Depending on the misalignment type (i.e., displacement, rotation) and direction the phase error can change significantly. As a result, for instance, we show that the imaging system is significantly less sensitive to cross-range displacement errors than to range displacement errors. We also show that the displacement errors are reduced for larger systems comprising many sub-apertures, due to the reduced averaged phase error. We find the impact of rotational errors is small compared to that of the displacement errors. However, as the sub-aperture size increases, rotational errors become more pronounced, becoming severe for larger sub-apertures with multiple feeds.
Citation
Hayrettin Odabasi, Mohammadreza F. Imani, Guy Lipworth, Jonah Gollub, and David R. Smith, "Investigation of Alignment Errors on Multi-Static Microwave Imaging Based on Frequency-Diverse Metamaterial Apertures," Progress In Electromagnetics Research B, Vol. 70, 101-112, 2016.
doi:10.2528/PIERB16052801
References

1. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional milimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, 2001.
doi:10.1109/22.942570

2. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, No. 7, 78-94, 2011.
doi:10.1109/MMM.2011.942702

3. Wang, Y. and A. E. Fathy, "Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, 1986-2000, 2012.
doi:10.1109/TGRS.2011.2170694

4. Chan, W. L., K. Charan, T. Dharmpal, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing," Applied Physics Letters, Vol. 93, No. 12, 121105, 2008.
doi:10.1063/1.2989126

5. Levy, U., H. C. Kim, C. H. Tsai, and Y. Fainman, "Near-IR demonstration of computer-generated holograms implemented using subwavelength gratings with space-variant orientation," Opt. Letters, Vol. 30, 2089-2091, 2005.
doi:10.1364/OL.30.002089

6. Watts, C. M., D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, "Terahertz compressive imaging with metamaterial spatial light modulators," Nature Photonics, Vol. 8, No. 8, 605-609, 2014.
doi:10.1038/nphoton.2014.139

7. Liutkus, A., D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, "Imaging with nature: Compressive imaging using a multiply scattering medium," Scientific Reports, Vol. 4, 5552, 2014.

8. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, No. 6117, 310-313, 2013.
doi:10.1126/science.1230054

9. Lipworth, G., A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, "Metamaterial apertures for coherent computational imaging on the physical layer," Journal of the Optical Society of America A, Vol. 30, No. 8, 1603-1612, 2013.
doi:10.1364/JOSAA.30.001603

10. Hunt, J., J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. Reynolds, D. J. Brady, and D. R. Smith, "Metamaterial microwave holographic imaging system," Journal of the Optical Society of America A, Vol. 31, No. 10, 2109-2119, 2014.
doi:10.1364/JOSAA.31.002109

11. Lipworth, G., A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, "Comprehensive simulation platform for a metamaterial imaging system," Appl. Opt., Vol. 54, No. 31, 9343-9353, 2015.
doi:10.1364/AO.54.009343

12. Yurduseven, O., M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
doi:10.2528/PIER14113002

13. Hand, T. H., J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, "Characterization of complementary electric field coupled resonant surfaces," Appl. Phys. Lett., Vol. 93, 212504, 2008.
doi:10.1063/1.3037215

14. Wahl, D. E., P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, "Phase gradient autofocus-a robust tool for high resolution SAR phase correction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 827-835, 1994.
doi:10.1109/7.303752

15. Ye, W., T. S. Yeo, and Z. Bao, "Weighted least-squares estimation of phase errors for SAR/ISAR autofocus," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2487-2892, 1999.
doi:10.1109/36.789644

16. Li, X., G. Liu, and J. Ni, "Autofocusing of ISAR images based on entropy minimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442

17. Li, J., R. Wu, and V. C. Chen, "Robust autofocus algorithm for ISAR imaging of moving targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 3, 1056-1069, 2001.
doi:10.1109/7.953256

18. Blacknell, D., A. Freeman, S. Quegan, and I. A. Ward, "Geometric accuracy in airborne SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 2, 241-258, 1989.
doi:10.1109/7.18685

19. Fornaro, G., G. Franceschetti, and S. Perna, "Motion compensation errors: Effects on the accuracy of airborne SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 4, 1338-1352, 2005.
doi:10.1109/TAES.2005.1561888

20. Alvarez, Y., Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdez, and J. A. Martinez-Lorenzo, "Phase error compensation in imaging systems using compressed sensing techniques," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1574-1577, 2013.
doi:10.1109/LAWP.2013.2293314

21. Ugur, S. and O. Arikan, "SAR image reconstruction and autofocus by compressed sensing," Digital Signal Processing, Vol. 22, No. 6, 923-932, 2012.
doi:10.1016/j.dsp.2012.07.011

22. Tian, J., J. Sun, X. Han, and B. Zhang, "Motion compensation for compressive sensing SAR imaging with autofocus," 2011 6th IEEE Conference on Industrial Electronics and Applications, 1564-1567, 2011.

23. Fromenteze, T., O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and S. Perna, "Computational imaging using a mode-mixing cavity at microwave frequencies," Appl. Phys. Lett., Vol. 106, 194104, 2015.
doi:10.1063/1.4921081

24. Sleasman, T., M. F. Imani, J. N. Gollub, and D. S. Smith, "Dynamic metamaterial aperture for microwave imaging," Appl. Phys. Lett., Vol. 107, 204104, 2015.
doi:10.1063/1.4935941

25. Marks, D. L., J. Gollub, and D. R. Smith, "Spatially resolving antenna arrays using frequency diversity," Journal of the Optical Society of America A, Vol. 33, No. 5, 899-912, 2016.
doi:10.1364/JOSAA.33.000899

26. Brady, D. J., Optical Imaging and Spectroscopy, Wiley and OSA, 2009.
doi:10.1002/9780470443736

27. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. Der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Ed., SIAM, 1994.
doi:10.1137/1.9781611971538

28. Bioucas-Dias, J. M. and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, 2007.
doi:10.1109/TIP.2007.909319

29. Hunt, J. D., Metamaterials for Computational Imaging, Duke University, 2013.