Vol. 49
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-08-08
Propagation Properties of Partially Coherent Lorentz-Gauss Beams in Uniaxial Crystals Orthogonal to the X-Axis
By
Progress In Electromagnetics Research M, Vol. 49, 103-115, 2016
Abstract
Analytical expressions of the elements of a cross spectral density matrix are derived to describe the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis. The intensity and degree of polarization for the partially coherent Lorentz-Gauss beam propagating in uniaxial crystals orthogonal to the x-axis are also presented. The evolution properties of the partially coherent Lorentz-Gauss beam are numerically demonstrated. The influences of the uniaxial crystal and coherence length on the propagation properties of the partially coherent Lorentz-Gauss beam in uniaxial crystals orthogonal to the x-axis are examined. The uniaxial crystal considered here has the property of the extraordinary refractive index being larger than the ordinary refractive index. The partially coherent Lorentz-Gauss beam in the direction along the x-axis spreads more rapidly than that in the direction along the y-axis. With increasing the ratio of the extraordinary refractive index to the ordinary refractive index, the spreading of the partially coherent Lorentz-Gauss beam increases in the direction along the x-axis, but decreases in the direction along the y-axis. Meanwhile, the degree of polarization in the edges of the long and short axes of the beam spot increases. With increasing the coherence length, the beam spot of the partially coherent Lorentz-Gauss beam uniformly becomes less, and the maximum degree of polarization in the edge of the beam spot decreases.
Citation
Guoquan Zhou, Zhiyue Ji, and Guoyun Ru, "Propagation Properties of Partially Coherent Lorentz-Gauss Beams in Uniaxial Crystals Orthogonal to the X-Axis," Progress In Electromagnetics Research M, Vol. 49, 103-115, 2016.
doi:10.2528/PIERM16052301
References

1. Naqwi, A. and F. Durst, "Focus of diode laser beams: A simple mathematical model," Appl. Opt., Vol. 29, 1780-1785, 1990.
doi:10.1364/AO.29.001780

2. Yang, J., T. Chen, G. Ding, and X. Yuan, "Focusing of diode laser beams: A partially coherent Lorentz model," Proc. SPIE, Vol. 6824, 68240A, 2008.
doi:10.1117/12.757962

3. Gawhary, O. E. and S. Severini, "Lorentz beams and symmetry properties in paraxial optics," J. Opt. A: Pure Appl. Opt., Vol. 8, 409-414, 2006.
doi:10.1088/1464-4258/8/5/007

4. Zhou, G., "Focal shift of focused truncated Lorentz-Gauss beam," J. Opt. Soc. Am. A, Vol. 25, 2594-2599, 2008.
doi:10.1364/JOSAA.25.002594

5. Zhou, G., "Beam propagation factors of a Lorentz-Gauss beam," Appl. Phys. B, Vol. 96, 149-153, 2009.
doi:10.1007/s00340-009-3460-9

6. Torre, A., "Wigner distribution function of Lorentz-Gauss beams: A note," Appl. Phys. B, Vol. 109, 671-681, 2012.
doi:10.1007/s00340-012-5236-x

7. Zhou, G. and R. Chen, "Wigner distribution function of Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system," Appl. Phys. B, Vol. 107, 183-193, 2012.
doi:10.1007/s00340-012-4889-9

8. Zhao, C. and Y. Cai, "Paraxial propagation of Lorentz and Lorentz-Gauss beams in uniaxial crystals orthogonal to the optical axis," J. Mod. Opt., Vol. 57, 375-384, 2010.
doi:10.1080/09500341003640079

9. Wang, X., Z. Liu, and D. Zhao, "Nonparaxial propagation of Lorentz-Gauss beams in uniaxial crystal orthogonal to the optical axis," J. Opt. Soc. Am. A, Vol. 31, 872-878, 2014.
doi:10.1364/JOSAA.31.000872

10. Zhou, G., "Fractional Fourier transform of Lorentz-Gauss beams," J. Opt. Soc. Am. A, Vol. 26, 350-355, 2009.
doi:10.1364/JOSAA.26.000350

11. Du, W., C. Zhao, and Y. Cai, "Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system," Opt. Lasers in Eng., Vol. 49, 25-31, 2011.
doi:10.1016/j.optlaseng.2010.09.004

12. Zhou, G. and X. Chu, "Average intensity and spreading of a Lorentz-Gauss beam in turbulent atmosphere," Opt. Express, Vol. 18, 726-731, 2010.
doi:10.1364/OE.18.000726

13. Zheng, H., R. Chen, and C. H. R. Ooi, "Self-focusing dynamics of Lorentz-Gaussian beams in Kerr media," Lasers Eng., Vol. 24, 345-354, 2013.

14. Keshavarz, A. and G. Honarasa, "Propagation of Lorentz-Gaussian beams in strongly nonlocal nonlinear media," Commun. Theor. Phys., Vol. 61, 241-245, 2014.
doi:10.1088/0253-6102/61/2/16

15. Saraswathi, R. C., K. Prabakaran, K. B. Rajesh, and Z. Jaroszewicz, "Tight focusing properties of radially polarized Lorentz-Gaussian beam," Optik, Vol. 125, 5339-5342, 2014.
doi:10.1016/j.ijleo.2014.06.058

16. Sun, Q., A. Li, K. Zhou, Z. Liu, G. Fang, and S. Liu, "Virtual source for rotational symmetric Lorentz-Gaussian beam," Chin. Opt. Lett., Vol. 10, 062601, 2012.
doi:10.3788/COL201210.062601

17. Jiang, Y., K. Huang, and X. Lu, "Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle," Opt. Express, Vol. 19, 9708-9713, 2011.
doi:10.1364/OE.19.009708

18. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.
doi:10.1017/CBO9781139644105

19. Zhou, G., "Propagation of a partially coherent Lorentz-Gauss beam through a paraxial ABCD optical system," Opt. Express, Vol. 18, 4637-4643, 2010.
doi:10.1364/OE.18.004637

20. Zhao, C. and Y. Cai, "Propagation of partially coherent Lorentz and Lorentz-Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere," J. Mod. Opt., Vol. 58, 810-818, 2011.
doi:10.1080/09500340.2011.573591

21. Eyyuboğlu, H. T., "Partially coherent Lorentz-Gaussian beam and its scintillations," Appl. Phys. B, Vol. 103, 755-762, 2011.
doi:10.1007/s00340-011-4414-6

22. Zhou, G. and X. Chu, "M2-factor of a partially coherent Lorentz-Gauss beam in a turbulent atmosphere," Appl. Phys. B, Vol. 100, 909-915, 2010.
doi:10.1007/s00340-010-4046-2

23. Xu, Y. and G. Zhou, "Kurtosis parameter of partially coherent Lorentz-Gauss beam in turbulent atmosphere," High Power Laser and Particle Beams, Vol. 22, 1187-1191, 2010.
doi:10.3788/HPLPB20102206.1187

24. Zhou, G., "Generalized M2-factors of truncated partially coherent Lorentz and Lorentz-Gauss beams," J. Opt., Vol. 12, 015701, 2010.
doi:10.1088/2040-8978/12/1/015701

25. Ciattoni, A., G. Cincotti, and C. Palma, "Propagation of cylindrically symmetric fields in uniaxial crystals," J. Opt. Soc. Am. A, Vol. 19, 792-796, 2002.
doi:10.1364/JOSAA.19.000792

26. Lü, B. and S. Luo, "Propagation properties of three-dimensional flatted Gaussian beams in uniaxially anisotropic crystals," Opt. Laser Technol., Vol. 36, 51-56, 2004.
doi:10.1016/S0030-3992(03)00132-4

27. Liu, D. and Z. Zhou, "Various dark hollow beams propagating in uniaxial crystals orthogonal to the optical axis," J. Opt. A: Pure Appl. Opt., Vol. 10, 095005, 2008.
doi:10.1088/1464-4258/10/9/095005

28. Tang, B., "Hermite-cosine-Gaussian beams propagating in uniaxial crystals orthogonal to the optical axis," J. Opt. Soc. Am. A, Vol. 26, 2480-2487, 2009.
doi:10.1364/JOSAA.26.002480

29. Li, J., Y. Chen, Y. Xin, and S. Xu, "Propagation of higher-order cosh-Gaussian beams in uniaxial crystals orthogonal to the optical axis," Eur. Phys. J. D, Vol. 57, 419-425, 2010.
doi:10.1140/epjd/e2010-00068-9

30. Zhou, G., R. Chen, and X. Chu, "Propagation of Airy beams in uniaxial crystals orthogonal to the optical axis," Opt. Express, Vol. 20, 2196-2205, 2012.
doi:10.1364/OE.20.002196

31. Khonina, S. N., A. A. Morozov, and S. V. Karpeev, "Effective transformation of a zero-order Bessel beam into a second-order vortex beam using a uniaxial crystal," Laser Phys., Vol. 24, 056101, 2014.
doi:10.1088/1054-660X/24/5/056101

32. Yumashev, K. V. and P. A. Loiko, "Depolarization in c-cut tetragonal laser crystals," Laser Phys., Vol. 26, 015002, 2016.
doi:10.1088/1054-660X/26/1/015002

33. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano convex lens," Progress In Electromagnetics Research, Vol. 83, 25-42, 2008.
doi:10.2528/PIER08041404

34. Hennani, S., L. Ez-Zariy, and A. Belafhal, "Transformation of finite Olver-Gaussian beams by an uniaxial crystal orthogonal to the optical axis," Progress In Electromagnetics Research M, Vol. 45, 153-161, 2016.
doi:10.2528/PIERM15102402

35. Wolf, E., "Unified theory of coherence and polarization of random electromagnetic beams," Phys. Lett. A, Vol. 312, 263-267, 2003.
doi:10.1016/S0375-9601(03)00684-4

36. Schmidt, P. P., "A method for the convolution of lineshapes which involve the Lorentz distribution," J. Phys. B: At. Mol. Opt. Phys., Vol. 9, 2331-2339, 1976.
doi:10.1088/0022-3700/9/13/018

37. Ciattoni, A. and C. Palma, "Optical propagation in uniaxial crystals orthogonal to the optical axis: Paraxial theory and beyond," J. Opt. Soc. Am. A, Vol. 20, 2163-2171, 2003.
doi:10.1364/JOSAA.20.002163

38. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Pergamon, 1999.
doi:10.1017/CBO9781139644181

39. Gradshteyn, I. S. and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.