Vol. 62
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-08-19
A Novel Wideband Circularly Polarized Patch Array with Meta-Surface
By
Progress In Electromagnetics Research Letters, Vol. 62, 1-8, 2016
Abstract
A wideband sequential-phase-feeding circularly polarized (CP) patch array is proposed in this paper. A well-designed meta-surface is placed above the array to enhance its impedance and axial ratio (AR) bandwidths. The proposed patch array has an overall size of 1.275λo×1.275λo×0.0935λo at 5.1 GHz. Measured results show that the impedance bandwidth (|S11|<-10 dB) of the array is 24.26% from 4.74 GHz to 6.05 GHz, and its 3 dB axial ratio bandwidth is 19% from 4.75 GHz to 5.75 GHz. The measured gain of the array at 5.7 GHz is 10.8 dBic. The measured results agree well with the simulated ones.
Citation
Ruiqi Wang, Yongchang Jiao, Liang Lu, and Huan Zhang, "A Novel Wideband Circularly Polarized Patch Array with Meta-Surface," Progress In Electromagnetics Research Letters, Vol. 62, 1-8, 2016.
doi:10.2528/PIERL16051403
References

1. Yang, S. S., K.-F. Lee, A. A. Kishk, and K.-M. Luk, "Design and study of wideband single feed circularly polarized microstrip antennas," Progress In Electromagnetics Research, Vol. 80, 45-61, 2008.
doi:10.2528/PIER07110604

2. Mohammadi, P. and V. Rafii, "High gain and broadband circularly polarized square slot antenna array," Progress In Electromagnetics Research Letters, Vol. 43, 105-113, 2013.
doi:10.2528/PIERL13080701

3. Fan, F., W. Wang, Z.-H. Yan, and K.-B. Tan, "Circularly polarized SIW antenna array based on sequential rotation feeding," Progress In Electromagnetics Research C, Vol. 47, 47-53, 2014.
doi:10.2528/PIERC13112401

4. Xu, P., Z.-H. Yan, T.-L. Zhang, and X.-Q. Yang, "Broadband circularly polarized slot antenna array with Fan-shaped feed line and L-shaped grounded strips," Progress In Electromagnetics Research Letters, Vol. 44, 125-131, 2014.
doi:10.2528/PIERL13121102

5. Ramirez, R. R., F. D. Flaviis, and N. G. Alexopoulos, "Single-feed circularly polarized microstrip ring antenna and arrays," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 1040-1047, 2000.
doi:10.1109/8.876322

6. Lo, W. K., C. H. Chan, and K. M. Luk, "Circularly polarised patch antenna array using proximity-coupled L-strip line feed," Electron. Lett., Vol. 36, No. 14, 1174-1175, 2000.
doi:10.1049/el:20000878

7. Lu, K. H. and T. N. Chang, "Circularly polarized array antenna with corporate-feed network and series-feed elements," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3288-3292, 2005.
doi:10.1109/TAP.2005.856331

8. Deng, C., Y. Li, Z. Zhang, and Z. Feng, "A wideband sequential-phase fed circularly polarized patch array," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3890-3893, 2014.
doi:10.1109/TAP.2014.2321380

9. Chen, A., Y. Zhang, Z. Chen, and S. Cao, "A Ka-band high-gain circularly polarized microstrip antenna array," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1115-1118, 2010.

10. Lin, S.-K. and Y. Lin, "A compact sequential-phase feed using uniform transmission lines for circularly polarized sequential-rotation arrays," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2721-2724, 2011.
doi:10.1109/TAP.2011.2152346

11. Karamzadeh, S., B. Virdee, V. Rafii, and M. Kartal, "Circularly polarized slot antenna array with sequentially rotated feed network for broadband application," International Journal of RF and microwave Computer, Vol. 25, No. 4, 358-363, 2015.
doi:10.1002/mmce.20869

12. Karamzadeh, S., V. Rafii, H. Saygin, and M. Kartal, "Polarisation diversity cavity back reconfigurable array antenna for C-band application," IET Microwaves, Antennas & Propagation, Vol. 10, No. 10, 955-960, 2016.
doi:10.1049/iet-map.2015.0733

13. Rafii, V., J. Nourinia, C. Ghobadi, and J. Pourahmadazar, "Broadband circularly polarized slot antenna array using sequentially rotated technique for C-band applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 128-131, 2013.
doi:10.1109/LAWP.2013.2237744

14. Karamzadeh, S., V. Rafii, M. Kartal, O. N. Ucan, and B. S. Virdee, "Circularly polarised array antenna with cascade feed network for broadband application in C-band," Electron. Lett., Vol. 50, No. 17, 1184-1186, 2014.
doi:10.1049/el.2014.1147

15. Maddio, S., "A circularly polarized antenna array with a convenient bandwidth/size ratio based on non-identical disc elements," Progress In Electromagnetics Research Letters, Vol. 57, 47-54, 2015.
doi:10.2528/PIERL15081703

16. Li, K., L. Li, and Y. Cai, "A novel design of low-profile dual-band circularly polarized antenna with meta-surface," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1650-1653, 2015.
doi:10.1109/LAWP.2015.2417169

17. Wu, J., Z. Wang, X. Liu, and Y. Yin, "Low-profile broadband circularly-polarized antennas with metamaterial structures," Microw. Opt. Technol. Lett., Vol. 57, No. 7, 1565-1568, 2015.
doi:10.1002/mop.29139

18. Agarwal, K., Nasimuddin, and A. Alphones, "Compact asymmetric-slotted-slit patch based circularly-polarized antenna with reactive impedance surface substrate," Microw. Opt. Technol. Lett., Vol. 54, No. 11, 2505-2510, 2012.
doi:10.1002/mop.27147

19. Yang, W., K. Tam, and W. Choi, "Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6206-6216, 2014.
doi:10.1109/TAP.2014.2361130

20. Cao, B., J. Dai, D. Li, H.Wang, and W. Shi, "A Ka-band axial ratio bandwidth enhanced circularly polarized LTCC patch antenna with truncated artificial magnetic conductor," 2014 3rd Asia-Pacific Conference on Antennas and Propagation, 403-406, 2014.
doi:10.1109/APCAP.2014.6992509