Vol. 61
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-07-19
S-Parameters Extraction of a Desired Network with Time-Domain Gates
By
Progress In Electromagnetics Research Letters, Vol. 61, 91-97, 2016
Abstract
A method for extracting a desired network from the composite measurement of a desired and undesired networks combination is proposed. The desired network is required to be a reciprocal and passive network. Time-domain responses are chosen by time-domain gates according to the signal flow diagram of the measured networks. This method can be used to characterize fixtures and de-embed of fixtures effects from the composite measurement of a device under test (DUT) and fixtures combination. This method can also compensate for masking errors. Extraction for the S-parameters of the desired network are described in detail, and the extraction result is validated with two simulations.
Citation
Lingyu Deng, Xiao-Long Chen, and Yajun Li, "S-Parameters Extraction of a Desired Network with Time-Domain Gates," Progress In Electromagnetics Research Letters, Vol. 61, 91-97, 2016.
doi:10.2528/PIERL16050609
References

1. Waldhoff, N., C. Andrei, D. Gloria, S. Lepilliet, F. Danneville, and G. Dambrine, "Improved characterization methology for MOSFETs up to 220 GHz," IEEE Trans. Microwave Theory and Techniques, Vol. 57, No. 5, 1237-1243, May 2009.
doi:10.1109/TMTT.2009.2017359

2. Zhang, J., Q. B. Chen, K. Qiu, A. C. Scogna, M. Schauer, G. Romo, J. L. Drewniak, and A. Orlandi, "Design and modeling for chip-to-chip communication at 20 Gbps," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 467-472, Fort Lauderdale, FL, 2010.

3. Hiebel, M., "Measurement accuracy and calibration," Fundamental Vector Network Analysis, 5th Edition, 109-131, Rohde & Schwarz, Germany, 2011.

4. Zhang, J., Q. B. Chen, Z. Qiu, J. L. Drewniak, and A. Orlandi, "Using a single-ended TRL calibration pattern to de-embed coupled transmission lines," IEEE International Symposium on Electromagnetic Compatibility, 197-202, Austin, 2009.

5. Dunsmore, J., N. Cheng, and Y.-X. Zhang, "Characterizations of asymmetric fixtures with a two-gate approach," 2011 77th ARFTG Microwave Measurement Conference (ARFTG), 1-6, Baltimore, MD, 2011.

6. Adamian, V. and B. Cole, "A novel procedure for characterization of multiport high speed balanced devices," 2006 IEEE International Symposium on Electromagnetic Compatibility, 395-398, San Jose, CA, 2007.

7. Dunsmore, J., "Time domain transforms," Handbook of Microwave Component Measurements: With Advanced VNA Techniques, 182-192, John Wiley & Sons, New York, 2012.

8. Pozar, D. M., "Microwave network analysis," Microwave Engineering, 4th Edition, 178-188, John Wiley & Sons, New York, 2012.

9. Chu, E., "Discrete convolution and the DFT," Discrete and Continuous Fourier Transforms: Analysis, Applications and Fast Algorithms, 27-29, CRC Press, New York, 2008.

10. Yoon, C., M. Tsiklauri, M. Zvonkin, Q. B. Chen, A. Razmadze, A. Aflaki, K. Jingook, J. Fan, and J. L. Drewniak, "Design criteria and error sensitivity of time-domain channel characterization (TCC) for asymmetry fixture de-embedding," IEEE Trans. Electromagnetic Compatibility, Vol. 57, No. 4, 836-846, Aug. 2015.
doi:10.1109/TEMC.2014.2379627

11. Mason, S. J., "Feedback theory — Further properties of signal flow graphs," Proceedings of the IRE, Vol. 44, No. 7, 920-926, Jul. 1956.
doi:10.1109/JRPROC.1956.275147

12. Joel, D., "Gating effects in time domain transforms," 2008 72nd ARFTG Microwave Measurement Symposium, 1-8, Portland, OR, 2008.