Vol. 49
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-07-10
The Performance Improvement of THz Antenna via Modeling and Characterization of Doped Graphene
By
Progress In Electromagnetics Research M, Vol. 49, 21-31, 2016
Abstract
The improvement of Terahertz (THz) antenna requires efficient (nano)materials to operate within the millimeter wave and THz spectrum. In this paper, doped graphene is used to improve the performance of two types of patch antennas, a rectangular and an elliptical antenna. The surface conductivity of conventional (non-doped) graphene is first modeled prior to the design and simulation of the two graphene based antennas in an electromagnetic solver. Next, different graphene models and their corresponding surface conductivities are computed based on different bias voltages or chemical doping. These configurations are then benchmarked against a similar antenna based on conventional metallic (copper) conductor to quantify their levels of performance improvement. The graphene based antennas showed significant improvements for most parameters of antenna than that of the conventional antenna. Besides that, the higher chemical potentials resulting from higher biasing voltages also resulted in this trend. Finally, the elliptical patch graphene antenna indicated better reflection performance, radiation efficiency and gain than a rectangular patch operating at the same resonant frequency.
Citation
Mohammed Taih Gatte, Ping Jack Soh, Hasliza A. Rahim, Raad Badlishah Ahmad, and Fareq Malek, "The Performance Improvement of THz Antenna via Modeling and Characterization of Doped Graphene," Progress In Electromagnetics Research M, Vol. 49, 21-31, 2016.
doi:10.2528/PIERM16050405
References

1. Akyildiz, I. F., J. M. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications," Physical Communication, Vol. 12, 16-32, 2014.
doi:10.1016/j.phycom.2014.01.006

2. Khiabani, N., "Modelling, design and characterisation of terahertz photoconductive antennas,", Doctoral Thesis, University of Liverpool, 2013.

3. Huang, Y., N. Khiabani, Y. Shen, and D. Li, "Terahertz photoconductive antenna efficiency," 2011 International Workshop on Antenna Technology (iWAT), 152-156, 2011.
doi:10.1109/IWAT.2011.5752384

4. Danana, B., B. Choudhury, and R. M. Jha, "Design of high gain microstrip antenna for THz wireless communications," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 3, 711-716, 2014.

5. Llatser, I., C. Kremers, D. N. Chigrin, J. M. Jornet, M. C. Lemme, A. Cabellos-Aparicio, et al. "Radiation characteristics of tunable graphennas in the terahertz band," Radioengineering, Vol. 21, 946-953, 2012.

6. Niu, T., W. Withayachumnankul, B. S. Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, et al. "Reflectarray antennas for terahertz communications,", arXiv preprint arXiv:1210.0653, 2012.

7. Hanson, G., "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas and Propagation Magazine, Vol. 50, 66-77, 2008.
doi:10.1109/MAP.2008.4563565

8. Walther, M., D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, "Terahertz conductivity of thin gold films at the metal-insulator percolation transition," Physical Review B, Vol. 76, 125408, 2007.
doi:10.1103/PhysRevB.76.125408

9. Lacour, S. P., D. Chan, S. Wagner, T. Li, and Z. Suo, "Mechanisms of reversible stretchability of thin metal films on elastomeric substrates," Applied Physics Letters, Vol. 88, 204103, 2006.
doi:10.1063/1.2201874

10. Sharma, A. and G. Singh, "Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, 1-7, 2009.
doi:10.1007/s10762-008-9416-z

11. Bayram, Y., Y. Zhou, B. S. Shim, S. Xu, J. Zhu, N. Kotov, et al. "E-textile conductors and polymer composites for conformal lightweight antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, 2732-2736, 2010.
doi:10.1109/TAP.2010.2050439

12. Deligeorgis, G., M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, et al. "Microwave propagation in graphene," Applied Physics Letters, Vol. 95, 073107, 2009.
doi:10.1063/1.3202413

13. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nature Materials, Vol. 6, 183-191, 2007.
doi:10.1038/nmat1849

14. Anand, S., D. S. Kumar, R. J.Wu, and M. Chavali, "Graphene nanoribbon based terahertz antenna on polyimide substrate," Optik-International Journal for Light and Electron Optics, Vol. 125, 5546-5549, 2014.
doi:10.1016/j.ijleo.2014.06.085

15. Akyildiz, I. F. and J. M. Jornet, "Electromagnetic wireless nanosensor networks," Nano Communication Networks, Vol. 1, 3-19, 2010.
doi:10.1016/j.nancom.2010.04.001

16. Ju, L., B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, et al. "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology, Vol. 6, 630-634, 2011.
doi:10.1038/nnano.2011.146

17. Balanis, C. A., Antenna Theory: Analysis and Design, Vol. 1, John Wiley & Sons, 2005.

18. Wang, L., S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Letters, Vol. 6, 361-364, 2006.
doi:10.1021/nl052371p

19. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics and Nanostructures-Fundamentals and Applications, Vol. 10, 353-358, 2012.

20. Thampy, A. S., M. S. Darak, and S. K. Dhamodharan, "Analysis of graphene based optically transparent patch antenna for terahertz communications," Physica E: Low-dimensional Systems and Nanostructures, Vol. 66, 67-73, 2015.
doi:10.1016/j.physe.2014.09.023

21. Bala, R. and A. Marwaha, "Development of computational model for tunable characteristics of graphene based triangular patch antenna in THz regime," Journal of Computational Electronics, 1-6, 2015.

22. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Applied Physics Letters, Vol. 101, 214102, 2012.
doi:10.1063/1.4767338

23. Hanson, G. W., "Dyadic Green’s functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on Antennas and Propagation, Vol. 56, 747-757, 2008.
doi:10.1109/TAP.2008.917005

24. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," Journal of Physics: Condensed Matter, Vol. 19, 026222, 2006.
doi:10.1088/0953-8984/19/2/026222

25. Radwan, A. H., M. D’Amico, and G. Gentili, "Reconfigurable THz Yagi antenna based on hybrid graphene-metal layout," 2014 Loughborough Antennas and Propagation Conference (LAPC), 671-675, 2014.
doi:10.1109/LAPC.2014.6996483

26. Costa, K., V. Dmitriev, C. Nascimento, and G. Silvano, "Graphene nanoantennas with different shapes," 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), 1-5, 2013.