Vol. 61
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-06-13
A Dual Band Fractal Slot Antenna Loaded with Jerusalem Crosses for Wireless and WiMAX Communications
By
Progress In Electromagnetics Research Letters, Vol. 61, 19-24, 2016
Abstract
In this paper, a combination of the Jerusalem cross (JC) as a fractal load and fractal Minkowski slot antenna for dual-band application is investigated. The prototype slot antenna has a Minkowski fractal formation with four Jerusalem cross (JC) loads to achieve dual-band application with compact size to improve the bandwidth. A T-shaped feed line is implemented in the final modeled antenna. The fabricated antenna has a bi-directional pattern with sufficient bandwidth at 2.4-3.1 GHz and 5.1-5.9 GHz with VSWR<2 for Wi-Fi, WiMAX, Bluetooth application as well as an IEEE WLAN protocol with a gain of 5-6 dBi, respectively. The size of the prototype patch antenna is 40×40 mm2, and the antenna is designed and fabricated on an FR-4 low cost substrate with εr=4.4 and thickness of 1.6 mm. It is simulated by HFSS full wave software. In addition, the VSWR, pattern and axial ratio of experimental results are presented and compared with simulation models. As a result, improvements of the Jerusalem cross compared with conventional cross have been achieved with some parameter tuning to improve the band width.
Citation
Mohammad Sadegh Sedghi, Mohammad Naser-Moghadasi, and Ferdows B. Zarrabi, "A Dual Band Fractal Slot Antenna Loaded with Jerusalem Crosses for Wireless and WiMAX Communications," Progress In Electromagnetics Research Letters, Vol. 61, 19-24, 2016.
doi:10.2528/PIERL16042702
References

1. Lee, C.-T. and K.-L. Wong, "Uniplanar printed coupled-fed PIFA with a band-notching slit for WLAN/WiMAX operation in the laptop computer," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1252-1258, 2009.
doi:10.1109/TAP.2009.2015843

2. Mobashsher, A. and A. Abbosh, "Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance," IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, 153-166, 2015.
doi:10.1109/MAP.2015.2414488

3. Krishna, D. D., M. Gopikrishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, "CPW-fed Koch fractal slot antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 389-392, 2008.
doi:10.1109/LAWP.2008.2000814

4. Lin, D.-B., I. Tang, and Y.-J. Wei, "Compact dual-band-notched CPW-fed wide-slot antenna for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 53, No. 7, 1496-1501, 2011.
doi:10.1002/mop.26042

5. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 8, 1160-1162, 2002.
doi:10.1109/TAP.2002.801360

6. Wang, X.-Y. and G.-M. Yang, "Dual frequency and dual circular polarization slot antenna for BeiDou navigation satellite system applications," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2222-2225, 2014.
doi:10.1002/mop.28560

7. Xiao, S., B.-Z. Wang, W. Shao, and Y. Zhang, "Bandwidth-enhancing ultralow-profile compact patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3443-3447, 2005.
doi:10.1109/TAP.2005.858838

8. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888

9. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-28, 2003.
doi:10.1109/MAP.2003.1232160

10. Chandel, R., A. K. Gautam, and B. K. Kanaujia, "Microstrip-line FED beak-shaped monopole-like slot UWB antenna with enhanced band width," Microwave and Optical Technology Letters, Vol. 56, No. 11, 2624-2628, 2014.
doi:10.1002/mop.28660

11. Hanapi, K. M., S. K. A. Rahim, B. M. Saad, A. Rani, M. Subri, and M. Z. A. Aziz, "An elliptically planar UWB monopole antenna with step slots defective ground structure," Microwave and Optical Technology Letters, Vol. 56, No. 9, 2084-2088, 2014.
doi:10.1002/mop.28530

12. Zarrabi, F. B., Z. Mansouri, R. Ahmadian, M. Rahimi, and H. Kuhestani, "Microstrip slot antenna applications with SRR for WiMAX/WLAN with linear and circular polarization," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1332-1338, 2015.
doi:10.1002/mop.29080

13. Krishna, R. V. S. R. and R. Kumar, "Design of ultra wideband trapezoidal shape slot antenna with circular polarization," AEU-International Journal of Electronics and Communications, Vol. 67, No. 12, 1038-1047, 2013.
doi:10.1016/j.aeue.2013.06.005

14. Chen, R. H. and Y.-C. Lin, "Miniaturized design of microstrip-fed slot antennas loaded with C-shaped rings," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 203-206, 2011.
doi:10.1109/LAWP.2011.2123075

15. Pan, S.-P., J.-Y. Sze, and P.-J. Tu, "Circularly polarized square slot antenna with a largely enhanced axial-ratio bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 969-972, 2012.

16. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, 2003.
doi:10.1109/MAP.2003.1189650

17. Kumar, R. and P. B. Nikam, "A modified ground apollonian ultra wideband fractal antenna and its backscattering," AEU-International Journal of Electronics and Communications, Vol. 66, No. 8, 647-654, 2012.
doi:10.1016/j.aeue.2011.12.002

18. An, J., G.-M. Wang, W.-D. Zeng, and L.-X. Ma, "UWB filter using defected ground structure of von koch fractal shape slot," Progress In Electromagnetics Research Letters, Vol. 6, 61-66, 2009.
doi:10.2528/PIERL08121309

19. Li, D. and J.-F. Mao, "A Koch-like sided fractal bow-tie dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2242-2251, 2012.
doi:10.1109/TAP.2012.2189719

20. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, 2000.
doi:10.1109/8.900236

21. Comisso, M., "On the use of dimension and lacunarity for comparing the resonant behavior of convoluted wire antennas," Progress In Electromagnetics Research, Vol. 96, 361-376, 2009.
doi:10.2528/PIER09082505

22. Mahatthanajatuphat, C., P. Akkaraekthalin, S. Saleekaw, and M. Krairiksh, "A bidirectional multiband antenna with modified fractal slot fed by CPW," Progress In Electromagnetics Research, Vol. 95, 59-72, 2009.
doi:10.2528/PIER09061603

23. ang, G.-D., M.-H. Liu, X.-W. Hu, L.-H. Kong, L.-L. Cheng, and Z.-Q. Chen, "Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses," Chinese Phys. B, Vol. 23, 017802, 2014.

24. Huang, H.-C., K.-H. Lin, H.-L. Su, C.-Y. Wu, and H.-H. Lin, "Design of dual-polarized high-gain antenna radome by using Jerusalem cross metamaterial structure," 2009 IEEE Antennas and Propagation Society International Symposium, 2009.