Vol. 61
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-06-13
Broadband and Gain Enhanced Bowtie Antenna with AMC Ground
By
Progress In Electromagnetics Research Letters, Vol. 61, 25-30, 2016
Abstract
A low-profile wideband bowtie antenna backed by artificial magnetic conductor (AMC) ground is presented for gain enhancement.The proposed bowtie antenna, loaded with an open stub in the upper layer, has broadband property. By using an AMC reflector,consisting of 6×9 metallic patches, the bidirectional radiation of the bowtie antenna is changed to unidirectional radiation. The distance between the bowtie antenna and the AMC surface is onlyλ/10 at 3.75 GHz. Both the bowtie antenna and the AMC surface are fabricated and measured. The measured results demonstrate good and stable performances, including maximum gain of 8.27 dBi, and flat gain response with variation of 0.6 dB in the wide impedance matching (S11 < -10 dB) band from 3.05 GHz to 4.35 GHz(35.1%). Furthermore, the maximum cross-polarization level is -17 dB for both E and H planes, and the measured front-to-back ratios are more than 18 dB.Good agreement between the simulated and measured results validates the proposed design approach.
Citation
Xue-Yan Song, Chuang Yang, Tianling Zhang, Ze-Hong Yan, and Ruina Lian, "Broadband and Gain Enhanced Bowtie Antenna with AMC Ground," Progress In Electromagnetics Research Letters, Vol. 61, 25-30, 2016.
doi:10.2528/PIERL16042606
References

1. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

2. Ta, S. X., I. Park, and W. Ziolkowski, "Circularly polarized crossed dipole on an HIS for 2.4/5.2/5.8-GHz WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1464-1467, 2013.
doi:10.1109/LAWP.2013.2288787

3. Yang, F. and Y. Rahmat-Samii, "Reflection phase characteristics of the EBG ground plane for low profile wire antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

4. Yang, W. C., W. Q. Che, and H. Wang, "High-gain design of a patch antenna using stub-loaded artificial magnetic conductor," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1172-1175, 2013.
doi:10.1109/LAWP.2013.2280576

5. Compton, R. C., R. C. Mcphedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, "Bowtie antennas on a dielectric half-space: Theory and experiment," IEEE Trans. Antennas Propag., Vol. 35, No. 6, 622-631, 1987.
doi:10.1109/TAP.1987.1144162

6. Loi, K. W., S. Uysal, and M. S. Leong, "Design of a wideband microstrip bowtie patch antenna," IEE Proc. — Microw. Antennas Propag., Vol. 145, No. 2, 137-140, 1998.
doi:10.1049/ip-map:19981632

7. Jin, P. and R. W. Ziolkowski, "High-directivity, electrically small, low-profilenear-field resonant parasitic antennas," IEEE Antennas Wireless Propag. Lett., Vol. 11, 305-309, 2012.

8. Yang, F. and W. Tang, "A novel low-profile high-gain antenna based on artificial magnetic conductor for LTE applications," International Symposium on Antennas, Propagation & EM Theory (ISAPE), 171-174, 2012.

9. Lu, P. and G. Hua, "Combination of bowtie shaped meander slot antenna with wideband AMC structure," 2014 IEEE Antennas and Propagation Society International Symposium, 2066-2067, USA, 2014.
doi:10.1109/APS.2014.6905360

10. Zhong, Y. W., G. M. Yang, and L. R. Zhong, "Gain enhancement of bowtie antenna using fractal wideband artificial magnetic conductor ground," Electron. Lett., Vol. 51, No. 4, 315-317, Feb. 2015.
doi:10.1049/el.2014.4017

11. Foroozesh, A. and L. Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 4-20, 2011.
doi:10.1109/TAP.2010.2090458

12. Lian, R., Z. Wang, Y. Z. Yin, J. Wu, and Z. Tang, "1 × 2 wideband patch-dipole antenna array with slot coupler," Electron. Lett., Vol. 51, No. 9, 664-665, 2015.
doi:10.1049/el.2015.0474