Vol. 156
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-06-17
Negative Group Delay Phenomenon Analysis Using Finite Unloaded Quality Factor Resonators
By
Progress In Electromagnetics Research, Vol. 156, 55-62, 2016
Abstract
This paper presents a comprehensive method to analyze negative group delay (NGD) phenomenon at microwave frequency. This method is based on a coupling matrix with finite unloaded quality factor resonators. Unlike conventional NGD circuit topologies that use a lumped resistor R along with bandstop resonators, the proposed topology does not require any R for generating NGD and therefore, provides fully distributed circuit realization. The proposed topology has both source to load and inter-resonator coupling structures. Analytical design equations are provided to obtain predefined NGD with matched input/output ports; the proposed structure therefore does not require any extra matching networks. From analytical analysis, it is also found that the NGD bandwidth as well as magnitude flatness can be controlled by inter-resonator couplings. The proposed design theory is proven through fabrications of NGD circuit at a center frequency of 2.14 GHz. The measurement results are in good agreement with simulations and predicted theoretical results.
Citation
Girdhari Chaudhary, and Yongchae Jeong, "Negative Group Delay Phenomenon Analysis Using Finite Unloaded Quality Factor Resonators," Progress In Electromagnetics Research, Vol. 156, 55-62, 2016.
doi:10.2528/PIER16041111
References

1. Hymel, C. H., M. H. Skolnick, R. A. Stubbers, and M. E. Brandt, "Temporally advanced signal detection: A review of technology and potential applications," IEEE Circuit and Systems Magazine, Vol. 11, No. 3, 10-25, Aug. 2011.
doi:10.1109/MCAS.2011.941076

2. Brillouin, L. and A. Sommerfeld, Wave Propagation and Group Velocity, 113-137, Academic Press Network, 1960.

3. Kandic, M. and G. E. Bridges, "Limits of negative group delay phenomenon in linear causal media," Progress In Electromagnetics Research, Vol. 134, 227-246, 2013.
doi:10.2528/PIER12082915

4. Lucyszyn, S., I. D. Robertson, and A. H. Aghvami, "Negative group delay synthesizer," Electronics Letters, Vol. 29, No. 9, 798-800, Apr. 1993.
doi:10.1049/el:19930533

5. Lucyszyn, S. and I. D. Robertson, "Analog reflection topology building blocks for adaptive microwave signal processing applications," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 3, 601-611, Mar. 1995.
doi:10.1109/22.372106

6. Ravelo, B., A. Perennec, M. L. Roy, and Y. G. Boucher, "Active microwave circuit with negative group delay," IEEE Microw. Wireless Compon. Letters, Vol. 17, No. 12, 861-863, Dec. 2007.
doi:10.1109/LMWC.2007.910489

7. Broomfield, C. D. and J. K. A. Everard, "Broadband negative group delay networks for compensation of microwave oscillators and filters," Electronics Letters, Vol. 9, No. 23, 1931-1932, Nov. 2000.

8. Choi, H., K. Song, C. D. Kim, and Y. Jeong, "Synthesis of negative group delay time circuit," Proceedings of Asia Pacific Microwave Conference, 1-4, 2008.

9. Kandic, M. and G. E. Bridges, "Bilateral Gain-compensated negative group delay circuit," IEEE Microw. Wireless Compon. Letters, Vol. 21, No. 6, 308-310, Jun. 2011.
doi:10.1109/LMWC.2011.2132696

10. Kandic, M. and G. E. Bridges, "Asymptotic limit of negative group delay in active resonator-based distributed circuits," IEEE Trans. Circuit System-I, Vol. 58, No. 8, 1727-1735, Aug. 2011.
doi:10.1109/TCSI.2011.2107251

11. Noto, H., K. Yamauchi, M. Nakayama, and Y. Isota, "Negative group delay circuit for feed-forward amplifier," Proc. of IEEE Inter. Microw. Symp. Dig., 1103-1106, Jun. 2007.

12. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group delay circuit," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1116-1125, May 2010.
doi:10.1109/TMTT.2010.2045576

13. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808

14. Ravelo, B., M. L. Roy, and A. Perennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microw. Optical Tech. Letters, Vol. 50, No. 12, 3078-3080, Dec. 2008.
doi:10.1002/mop.23883

15. Mirzaei, H. and G. V. Eleftheriades, "Realizing non-Foster reactive elements using negative group delay networks," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 12, 4322-4332, Dec. 2013.
doi:10.1109/TMTT.2013.2281967

16. Mirzaei, H. and G. V. Eleftheriades, "Arbitrary-angle squint free beamforming in series-fed antenna arrays using non-Foster elements synthesized by negative group delay networks," IEEE Trans. Antennas and Propagation, Vol. 63, No. 5, 1997-2010, May 2015.
doi:10.1109/TAP.2015.2408364

17. Jeong, Y., H. Choi, and C. D. Kim, "Experimental verification for time advancement of negative group delay in RF electronics circuits," Electronics Letters, Vol. 46, No. 4, 306-307, Feb. 2010.
doi:10.1049/el.2010.3147

18. Choi, H., Y. Kim, Y. Jeong, and C. D. Kim, "Synthesis of reflection type negative group delay circuit using transmission line resonator," Proceeding of 39th European Microw. Conf., 902-605, Sep. 2009.

19. Choi, H., G. Chaudhary, T. Moon, Y. Jeong, J. Lim, and C. D. Kim, "A design of composite negative group delay circuit with lower signal attenuation for performance improvement of power amplifier linearization techniques," IEEE Inter. Microw. Symp. Dig., 1-4, Jun. 2011.

20. Chaudhary, G. and Y. Jeong, "Distributed transmission line negative group delay circuit with improved signal attenuation," IEEE Microw. Wireless Compon. Letters, Vol. 24, No. 1, 20-22, Jan. 2014.
doi:10.1109/LMWC.2013.2287246

21. Chaudhary, G. and Y. Jeong, "Transmission line negative group delay networks with improved signal attenuation," IEEE Antenna and Wireless Propag. Letters, Vol. 13, 1039-1042, 2014.
doi:10.1109/LAWP.2014.2327098

22. Chaudhary, G. and Y. Jeong, "Low signal attenuation negative group delay network topologies using coupled lines," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 10, 2316-2324, Oct. 2014.
doi:10.1109/TMTT.2014.2345352

23. Chaudhary, G. and Y. Jeong, "A design of compact wideband negative group delay network using cross coupling," Microw. Optical Technology Letters, Vol. 56, No. 11, 2612-2616, Nov. 2014.

24. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 2, 234-243, Feb. 2014.
doi:10.1109/TMTT.2013.2295555

25. Michael, C. T. and T. Itoh, "Maximally flat negative group delay circuit: A microwave transversal filter approach," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 6, 1330-1342, Jun. 2014.
doi:10.1109/TMTT.2014.2320220

26. Naglich, E. J., J. Lee, D. Peroulis, and W. J. Chappell, "Switchless tunable bandstop to all-pass reconfigurable filter," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 5, 1258-1265, May 2012.
doi:10.1109/TMTT.2012.2188723

27. Lee, J., E. J. Naglich, H. H. Sigmarsson, D. Peroulis, and W. J. Chappell, "New bandstop filter circuit topology and its application to design of a bandstop to bandpass switchable filter," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 3, 1114-1123, Mar. 2013.
doi:10.1109/TMTT.2012.2237036

28. Hong, J. S. and M. J. Lancaster, Microwave Filters for RF/Microwave Applications, John Wiley & Sons Inc., 2001.
doi:10.1002/0471221619