Vol. 61
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-07-12
Compact Filtering Power Divider Based on Half Mode Substrate Integrated Waveguide
By
Progress In Electromagnetics Research Letters, Vol. 61, 55-62, 2016
Abstract
In this paper, a compact filtering power divider (PD) based on half mode substrate integrated waveguide (HMSIW) is presented. The proposed structure is realized by etching slots on the top layer of the HMSIW PD. Accordingly, two resonators are embedded in each patch, as a second order filter. The slots dimensions are obtained by the relationship between them and the extracted external quality factor and coupling coefficient. A good agreement between the simulated and measured results is reported. The measured 3 dB fractional bandwidth is 25% (6.3-8.1 GHz). The maximum insertion loss is 0.9 dB, and the return loss is above 20 dB in the passband. This design has the advantages of low insertion loss, improved out-of-band rejection, compact size, controllable bandwidth, and high selectivity.
Citation
Ali-Reza Moznebi, and Kambiz Afrooz, "Compact Filtering Power Divider Based on Half Mode Substrate Integrated Waveguide," Progress In Electromagnetics Research Letters, Vol. 61, 55-62, 2016.
doi:10.2528/PIERL16040805
References

1. Chen, X. P. and K. Wu, "Substrate integrated waveguide filter: Basic design rules and fundamental structure features," IEEE Microw. Magazine, Vol. 15, No. 5, 108-116, 2014.
doi:10.1109/MMM.2014.2321263

2. Rui, M., L. Mengjia, S. Houjun, L. Zhen, and Z. Pei, "Design and simulation of a W-band two-way power divider based on substrate integrated waveguide," IEEE International Conference on Microw. Technology & Computational Electromagnetics (ICMTCE), 100-102, 2013.

3. Hao, Z., W. Hong, H. Li, H. Zhang, and K. Wu, "Multiway broadband substrate integrated waveguide (SIW) power divider," Antennas and Propagation Society Int. Symp., Vol. 1, 639-642, 2005.

4. Uchimura, H., T. Takenoshita, and M. Fujii, "Development of a laminated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2438-2443, 1998.
doi:10.1109/22.739232

5. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines," IEE Proc. Microw. Antennas Prop., Vol. 152, No. 1, 35-42, 2005.
doi:10.1049/ip-map:20040726

6. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microw. Antennas Prop., Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

7. Hong, W., B. Liu, Y. Wang, Q. Lai, H. Tang, X. X. Yin, Y. D. Dong, Y. Zhang, and K. Wu, "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," Proc. Joint 31st Int. Conf. Infr. Millim. Waves and 14th Int Conf. Terahertz Electron., 219-219, 2006.

8. Chiapperino, M. A., O. Losito, T. Castellano, G. Venanzoni, L. Mescia, G. Angeloni, C. Renghini, P. Carta, P. Potenza, and F. Prudenzano, "Dual-band substrate integrated waveguide resonator based on Sierpinski carpet," Progress In Electromagnetics Research C, Vol. 57, 1-12, 2015.
doi:10.2528/PIERC14111306

9. Wang, Y., W. Hong, Y. Dong, B. Liu, H. J. Tang, J. Chen, X. Yin, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) bandpass filter," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 4, 265-267, 2007.
doi:10.1109/LMWC.2007.892958

10. Zhang, Z. Y. and K. Wu, "Broadband half-mode substrate integrated waveguide (HMSIW) Wilkinson power divider," IEEE MTT-S Int. Microw. Symp. Dig., 879-882, 2008.

11. Jin, H. and G. Wen, "A novel four-way Ka-band spatial power combiner based on HMSIW," IEEE Microw. Wirel. Compon. Lett., Vol. 18, No. 8, 515-517, 2008.
doi:10.1109/LMWC.2008.2001007

12. Smith, N. A. and R. Abhari, "Compact substrate integrated waveguide Wilkinson power dividers," IEEE International Symposium on Antennas and Propagation, 1-4, 2009.

13. Zou, X., C. M. Tong, and D. W. Yu, "Y-junction power divider based on substrate integrated waveguide," Electron. Lett., Vol. 47, No. 25, 1375-1376, 2011.
doi:10.1049/el.2011.2953

15. Hui, J. N., W. J. Feng, and W. Q. Che, "Balun bandpass filter based on multilayer substrate integrated waveguide power divider," Electron. Lett., Vol. 48, No. 10, 571-573, 2012.
doi:10.1049/el.2012.0479

16. Zhang, X., H. Wang, C. Yu, Q. Wu, and W. Hong, "Out-of-phase filtering power divider using rectangular SIW cavity," Microwave Conference (APMC), 705-707, 2014.

17. He, Z., J. Cai, Z. Shao, X. Li, and Y. Huang, "A novel power divider integrated with SIW and DGS technology," Progress In Electromagnetics Research, Vol. 139, 289-301, 2013.
doi:10.2528/PIER13022005

18. Wong, S. W., K. Wang, Z. N. Chen, and Q. X. Chu, "Design of millimeter-wave bandpass filter using electric coupling of substrate integrated waveguide (SIW)," IEEE Microw. Wirel. Compon. Lett., Vol. 24, No. 1, 26-28, 2014.
doi:10.1109/LMWC.2013.2288177

19. Rayas-Snchez, J. E. and V. Gutierrez-Ayala, "A general EM-based design procedure for single-layer substrate integrated waveguide interconnects with microstrip transitions," IEEE MTT-S Int. Microw. Symp. Dig., 983-986, 2008.

20. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, 2005.
doi:10.1109/TMTT.2004.839303

21. Pozar, D. M., Microwave Engineering, Wiley, 2011.

22. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits — A new concept for high-frequency electronics and optoelectronics," Telecommun. Modern Satellite, Cable, Broadcast. Service/TELSIKS 6th Int. Conf., Vol. 1, P-III–P-X, 2003.

23. Kordiboroujeni, Z. and J. Bornemann, "New wideband transition from microstrip line to substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 12, 2983-2989, 2014.
doi:10.1109/TMTT.2014.2365794

24. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2004.