Vol. 61
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-07-14
Dual Broadband Metamaterial Polarization Converter in Microwave Regime
By
Progress In Electromagnetics Research Letters, Vol. 61, 71-76, 2016
Abstract
Polarization converters based on metamaterial have broad application in imaging, sensing and communication from microwave to optical frequency. However, its performance is limited by single function and narrowband. In this paper, a new type of polarization converter based on square loop shaped metamaterial has been presented. It works in the reflection mode to achieve broadband polarization conversion for both circular and x/y linear polarization waves. The incident linearly polarized wave will be converted to its cross-polarized state with a polarization conversion ratio (PCR) lager than 0.9 in two distinct broad frequency ranges; on the other hand, circularly polarized wave will be reflected to its co-polarized state efficiently in the same spectrum regimes. Good agreements have been observed for both simulation and measurement results. This work offers a further step in developing high performance multi-function microwave or optical devices.
Citation
Dong Yang, Hai Lin, and Xiaojun Huang, "Dual Broadband Metamaterial Polarization Converter in Microwave Regime," Progress In Electromagnetics Research Letters, Vol. 61, 71-76, 2016.
doi:10.2528/PIERL16033004
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
doi:10.1126/science.1096796

3. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater., Vol. 6, No. 12, 946-950, 2007.
doi:10.1038/nmat2033

4. Zhang, B., "Electrodynamics of transformation-based invisibility cloaking," Light: Sci. Appl., Vol. 1, No. 10, e32, 2012.
doi:10.1038/lsa.2012.32

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

6. He, X. J., L. Wang, J. M. Wang, X. H. Tian, J. X. Jiang, and Z. X. Geng, "Electromagnetically induced transparency inplanar complementary metamaterial for refractive index sensing applications," J. Phys. D: Appl. Phys., Vol. 46, No. 36, 510-516, 2013.
doi:10.1088/0022-3727/46/36/365302

7. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultra sensitive spectroscopy and identification of molecular monolayers," Nat. Mater., Vol. 11, No. 1, 69-75, 2012.
doi:10.1038/nmat3161

8. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501

9. Cheng, Y. Z., W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Ultra broadband reflective polarization convertor for terahertz waves," Appl. Phys. Lett., Vol. 105, No. 18, 181111–4, 2014.
doi:10.1063/1.4901272

10. Dincer, A. F., M. Karaaslan, E. Unal, O. Akgol, and C. Sabah, "Chiral metamaterial structures with strong optical activity and their applications," Optical Engineering, Vol. 53, No. 10, 107101-107108, 2014.
doi:10.1117/1.OE.53.10.107101

11. Zhang, L., P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, "Adjustable wideband reflective converter based on cut-wire metasurface," J. Opt., Vol. 17, No. 10, 105105, 2015.
doi:10.1088/2040-8978/17/10/105105

12. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarization using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.
doi:10.2528/PIER13063003

13. Yang, Y., W. Wang, P. Moitra, I. Kravchenko, D. P. Briggs, and J. Valentine, "Dielectric metareflect array for broadband linear polarization conversion and optical vortex generation," Nano. Lett., Vol. 14, No. 3, 1394-1399, 2014.
doi:10.1021/nl4044482

14. Chen, H. T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nat. Photon., Vol. 3, No. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3

15. Hsieh, C. F., R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Opt. Lett., Vol. 31, No. 8, 1112-1114, 2006.
doi:10.1364/OL.31.001112

16. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401, 2006.
doi:10.1103/PhysRevLett.97.177401

17. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, No. 3, 031111-3, 2011.
doi:10.1063/1.3615054

18. Cao, Y., Y. Xie, Z. Geng, J. Liu, Q. Kan, and H. Chen, "Polarization-sensitive coupling and transmission dip shift in asymmetric metamaterials," J. Phys. Chem. C, Vol. 119, No. 11, 6204-6210, 2015.
doi:10.1021/jp512296t

19. Jiang, S. C., X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, and M. Wang, "Controlling the polarization state of light with a dispersion-free metastructure," Phys. Rev. X, Vol. 4, No. 2, 021026, 2014.

20. Li, Z., S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, "Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial," Appl. Phys. Lett., Vol. 105, No. 20, 201103-5, 2014.

21. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, No. 50, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104

22. Tamayama, Y., K. Yasui, T. Nakanishi, and M. Kitano, "A linear-to-circular polarization converter with half transmission and half reflection using a single-layered metamaterial," Appl. Phys. Lett., Vol. 105, No. 2, 021110-4, 2014.
doi:10.1063/1.4890623

23. Wu, J., B. Ng, H. Liang, M. Breese, M. Hong, S. A. Maier, H. O. Moser, and O. Hess, "Chiral metafoils for terahertz broadband high-contrast flexible circular polarizers," Phys. Rev. Appl., Vol. 2, No. 1, 014005, 2014.
doi:10.1103/PhysRevApplied.2.014005

24. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to Fabry-Perot-Like cavity," Opt. Express, Vol. 22, No. 10, 11707-11712, 2014.
doi:10.1364/OE.22.011707

25. Mutlu, M. and E. Ozbay, "A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, No. 5, 051909-4, 2012.
doi:10.1063/1.3682591

26. Tremain, B., H. J. Rance, A. P. Hibbins, and J. R. Sambles, "Polarization conversion from a thin cavity array in the microwave regime," Sci. Rep., Vol. 5, No. 9366, 2015.

27. Huang, S., J. Li, A. Zhang, J. Wang, and Z. Xu, "Broadband cross polarization converter using plasmon hybridizations in a ring/disk cavity," Opt. Express, Vol. 22, No. 17, 20973-20981, 2014.
doi:10.1364/OE.22.020973

28. Ma, H. F., G. Z. Wang, G. S. Kong, and T. J. Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Opt. Mater. Express, Vol. 4, No. 8, 1717-1724, 2014.
doi:10.1364/OME.4.001717

29. Ding, F., Z. Wang, S. He, M. S. Vladimir, and V. K. Alexander, "Broadband high-efficiency half-wave plate a supercell-based plasmonic metasurface approach," ACS Nano., Vol. 9, No. 4, 4111-4119, 2015.
doi:10.1021/acsnano.5b00218

30. Nanfang, Y., P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-347, 2011.
doi:10.1126/science.1210713