Vol. 60
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-13
Analysis of Wide Band Scattering from Objects Using the Adaptive Improved Ultra-Wide Band Characteristic Basis Functions
By
Progress In Electromagnetics Research Letters, Vol. 60, 45-51, 2016
Abstract
The improved ultra-wide band characteristic basis function method (IUCBFM) is an efficient approach to analyze the wide-band scattering problems because the improved ultra-wide characteristic basis functions (IUCBFs) can be reused for any frequency sample in the range of interest. However, the number of the IUCBFs constructed at the highest frequency point is excessive, and the computational complexity will be increased when applying the same number of IUCBFs at the lower frequency points. To mitigate this problem, an adaptive IUCBFs construction method is presented which can decrease the computational complexity at the lower frequency points. In the proposed method, the given frequency band is adaptively divided into multiple sub-bands in consideration of the number of the IUCBFs. The adaptive IUCBFs are obtained at the highest frequency point in each sub-band, which leads to smaller number of IUCBFs and significant reduction of solver time at lower frequency band. The numerical results have demonstrated the accuracy and efficiency of the proposed method.
Citation
Wenyan Nie, and Zhonggen Wang, "Analysis of Wide Band Scattering from Objects Using the Adaptive Improved Ultra-Wide Band Characteristic Basis Functions," Progress In Electromagnetics Research Letters, Vol. 60, 45-51, 2016.
doi:10.2528/PIERL16033003
References

1. Harrington, R. F., Field Computation by Method of Moments, IEEE Press, 1992.

2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Ant. Propag. Mag., Vol. 53, No. 3, 7-12, 1993.
doi:10.1109/74.250128

3. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

4. Chen, M., R. S. Chen, and X. Q. Hu, "Augmented MLFMM for analysis of scattering from PEC object with fine structures," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 26, No. 5, 418-428, 2011.

5. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

6. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC," IEEE Trans. Electromagn. Compat., Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

7. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microw. Opt. Technol. Lett., Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685

8. Lucente, E., A. Monorchio, and R. Mittra, "An iteration free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Trans. Antennas Propag., Vol. 56, No. 4, 999-1007, 2008.
doi:10.1109/TAP.2008.919166

9. Burke, G. J., "Using model based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Trans. Mag., Vol. 25, 2807-2809, 1988.
doi:10.1109/20.34291

10. Newman, E. H., "Generation of wide band from the method of moments by interpolating the impedance matrix," IEEE Trans. Antennas Propag., Vol. 36, 1820-1824, 1988.
doi:10.1109/8.14404

11. Reddy, C. J., M. D. Deshpande, and C. R. Cockrell, "Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic evaluation technique," IEEE Trans. Antennas Propag., Vol. 46, No. 8, 1229-1233, 1998.
doi:10.1109/8.718579

12. Wang, X., S. X. Gong, and J. L. Guo, "Fast and accurate wide-band analysis of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4624-4633, 2011.
doi:10.1109/TAP.2011.2165495

13. Sun, Y. F., Y. Du, and Y. Sao, "Fast computation of wideband RCS using characteristic basis function method and asymptotic waveform evaluation technique," Journal of Electronics (in Chinese), Vol. 27, No. 4, 463-467, 2010.

14. Han, G. D., Y. H. Pan, and B. F. He, "Fast analysis for 3D wide-band & wide-angle electromagnetic scattering characteristic by AMCBFM-MBPE," Journal of Microwaves, Vol. 25, No. 6, 32-37, 2009.

15. Degiorgi, M., G. Tiberi, and A. Monorchio, "Solution of wide band scattering problems using the characteristic basis function method," IET Microwaves Antennas and Propagation, Vol. 6, No. 1, 60-66, 2012.
doi:10.1049/iet-map.2011.0309

16. Zhang, M. Y., Y. F. Sun, and Z. G. Wang, "Solutions of broadband RCS using the characteristic basis function method," IEEE MTTS International Wireless Symposium, 1-4, Mar. 2015.

17. Nie, W. Y. and Z. G. Wang, "Solution for wide band scattering problems by using the improved ultra-wide band characteristic basis function method," Progress In Electromagnetics Research Letters, Vol. 58, 37-43, 2016.
doi:10.2528/PIERL15080801

18. Tsang, L., C. E. Mandt, and D. H. Ding, "Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell’s equations," Optics Letters, Vol. 17, No. 5, 314-316, 1992.
doi:10.1364/OL.17.000314

19. Wang, Z. G., Y. F. Sun, and G. H. Wang, "Analysis of electromagnetic scattering from perfect electric conducting targets using improved characteristic basis function method and fast dipole method," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 7, 893-902, 2014.
doi:10.1080/09205071.2014.895425