Vol. 60
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-18
Design of Compact Microstrip Antenna Array with Decoupling Network
By
Progress In Electromagnetics Research Letters, Vol. 60, 59-65, 2016
Abstract
An innovative decoupling microstrip antenna array is designed. In the design approach, a decoupling and folding microstrip circuit is proposed instead of lumped element circuit, so that the circuit structure is simplified, and the antenna array is fabricated easily in print. Inverted L shape is used as its radiator in order that the size of the antenna array is miniaturized. Stepped impedance transformer is added for the sake of weakening ports reflection. The simulation and measurement results show that the proposed antenna array works at 2.45 GHz, and its reflection coefficient and isolation are both below -20 dB in the working band (2.4 GHz-2.48 GHz). The proposed antenna array has patterns close to omnidirectional.
Citation
You-Bao Wang, Shun Xiao, Bo Zhang, and Ye Wei, "Design of Compact Microstrip Antenna Array with Decoupling Network," Progress In Electromagnetics Research Letters, Vol. 60, 59-65, 2016.
doi:10.2528/PIERL16032202
References

1. Shannon, C. E., "A mathematical theory of communication," Bell System Technical Journal, Vol. 27, No. 3, 379-423, 1948.
doi:10.1002/j.1538-7305.1948.tb01338.x

2. Andersen, J. B., "Array gain and capacity for known random channels with multiple element arrays at both ends," IEEE J. Select. Areas Commun., Vol. 18, 2172-2178, Nov. 2000.

3. Cui, S., Y. Liu, and W. Jiang, "Compact dual-band monopole antennas with high port isolation," Electronics Lett., Vol. 47, No. 10, 579-58, May 2011.
doi:10.1049/el.2010.3603

4. Lu, S., H. T. Hui, and M. Bialkowski, "Performance analysis of multiple-input multiple-output orthogonal frequency division multiplexing systems under the influence of antenna mutual coupling effect," IET Microwaves, Antennas & Propagation, Vol. 3, No. 2, 288-295, March 2009.
doi:10.1049/iet-map:20070302

5. Hui, H. S. and H. T. Lui, "Effective mutual coupling compensation for direction-of-arrival estimations using a new, accurate determination method for the receiving mutual impedance," Journal of Electromagnetic Waves & Applications, Vol. 24, 271-281, 2010.

6. Yeung, L. K. and Y. E.Wang, "Mode-based beamforming arrays for miniaturized platforms," IEEE Trans. Microwave Theory and Techniques, Vol. 57, No. 1, 45-52, Jan. 2009.
doi:10.1109/TMTT.2008.2008944

7. Xu, H., G. Wang, and M. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Trans. Magnetics, Vol. 49, No. 4, 1526-1529, Apr. 2013.
doi:10.1109/TMAG.2012.2230272

8. Yeung, L. K. and Y. E. Wang, "A decoupling technique for compact antenna arrays in handheld terminals," IEEE Trans. Radio and Wireless Symposium (RWS), 80-83, New Orleans, LA, 2010.

9. Kim, I., W. J. Kim, Y. Kim, and Y. E. Kim, "Low-profile wideband MIMO antenna with suppressing mutual coupling between two antennas," Microwave and Optical Technology Lett., Vol. 50, No. 5, 1336-1339, 2008.
doi:10.1002/mop.23368

10. Luo, C. M., J. S. Hong, and L. L. Zhong, "Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1766-1769, Apr. 2015.
doi:10.1109/LAWP.2015.2423318

11. Zhu, J. and G. V. Eleftheriades, "A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, No. 1, 379-382, 2010.

12. Dadashzadeh, G., A. Dadgarpour F. Jolani, and B. S. Virdee, "Mutual coupling suppression in closely spaced antennas," IET Microwaves Antennas & Propagation, Vol. 5, No. 1, 113-125, 2011.
doi:10.1049/iet-map.2009.0564

13. Park, S. and C. Jung, "Compact MIMO antenna with high isolation performance," IET Electronics letters, Vol. 46, No. 6, 390-391, 2010.
doi:10.1049/el.2010.3301

14. Chen, S. C., Y. S. Wang, and S. J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. Antennas and Propagation, Vol. 56, No. 12, 3650-3658, Dec. 2008.
doi:10.1109/TAP.2008.2005469

15. Tang, X., K. Mouthaan, and J. C. Coetzee, "Tunable decoupling and matching network for diversity enhancement of closely spaced antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 268-271, 2012.
doi:10.1109/LAWP.2012.2188773

16. Pozar, D M., Microwave Engineering, Wiley. com, 2009.

17. Zhao, L., L. K. Yeung, and K. L. Wu, "A novel second-order decoupling for two-element compact antenna arrays," Microwave Conf., Asia-Pacific, 1172-1174, 2012.

18. Zhao, L., L. K. Yeung, and K. L. Wu, "A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals," IEEE Trans. Antennas and Propagation, Vol. 62, No. 5, 2767-2776, May 2014.
doi:10.1109/TAP.2014.2308547

19. Zhao, L. and K. L. Wu, "A dual-band coupled resonator decoupling network for two coupled antennas," IEEE Trans. Antennas and Propagation, Vol. 63, No. 7, 2843-2850, Jul. 2015.
doi:10.1109/TAP.2015.2421973

20. Lui, H.-S., H. T. Hui, and M. S. Leong, "A note on the mutual-coupling problems in transmitting and receiving antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 51, No. 5, 171-176, Oct. 2009.