Vol. 60
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-05-31
A Frequency Selective Surface with Polarization Rotation Based on Substrate Integrated Wavwguide
By
Progress In Electromagnetics Research Letters, Vol. 60, 121-125, 2016
Abstract
A frequency selective surface (FSS) with polarization rotation which provides a quasi-elliptic bandpass response is presented in this paper. Based on substrate integrated waveguide cavity (SIWC), 90 degrees polarization rotation is obtained when electromagnetic wave passes through the frequency selective surface at specially appointed polarization in a range of 16.28-16.70 GHz. Moreover, TM120/TM210 dual-mode configuration appears in the cavity within the passband. The design has been proved with high stability to electromagnetic wave of different incident angles. And the measured results in anechoic chamber provide good agreement with those from commercial software simulations.
Citation
Tao Zhong, Hou Zhang, Rui Wu, and Xue-Liang Min, "A Frequency Selective Surface with Polarization Rotation Based on Substrate Integrated Wavwguide," Progress In Electromagnetics Research Letters, Vol. 60, 121-125, 2016.
doi:10.2528/PIERL16031502
References

1. Shin, D. K., Y. Song, and J. Im, "Effect of PCB surface modifications on the EMC-to-PCB adhesion in electronic packages," IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 2, 498-508, Jun. 2010.
doi:10.1109/TCAPT.2010.2047018

2. Brauer, J. R., Electromagnetic Compatibility, Wiley, 2014.

3. Liu, K., G. Liu, and C. Zhang, "EM radiation analyzing of louvers on HF electronic equipment enclosures with apertures," Journal of Air Force Engineering University: Natural Science Edition, Vol. 10, No. 3, 81-85, 2016.

4. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770

5. Rashid, A. K., Z. Shen, and B. Li, "An elliptical bandpass frequency structure based on microstrip lines," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4661-4669, Oct. 2012.
doi:10.1109/TAP.2012.2207355

6. Singh, D., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, Feb. 2012.
doi:10.2528/PIERB11121601

7. Munk, B. A., Finite Antenna Arrays and FSS, John Wiley and Sons, Inc., 2005.

8. Zheng, J. and S. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702

9. Gao, X., X. Han, W. Cao, H. Li, H. Ma, and T. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3522-3530, Aug. 2015.
doi:10.1109/TAP.2015.2434392

10. Shi, H., J. Li, A. Zhang, Y. Jiang, J. Wang, Z. Xu, and S. Xia, "Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 104-107, 2015.
doi:10.1109/LAWP.2014.2356483

11. Carl, P. and G. Anthony, "Millimeter-wave transmitarrays for wavefront and polarization control," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4407-4417, Dec. 2013.
doi:10.1109/TMTT.2013.2287173

12. Simone, A. W., W. Hong, B. Maurizio, and K. Wu, "Polarization rotating frequency selective surface based on substrate integrated waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1202-1213, Apr. 2010.
doi:10.1109/TAP.2010.2041170

13. Zuo, Y., Z. Shen, and Y. Feng, "Frequency-selective microwave polarization rotator using substrate-integrated waveguide cavities," Chinese Physics B, Vol. 23, No. 3, 034101, 2014.
doi:10.1088/1674-1056/23/3/034101

14. Zhou, H., W. Hong, L. Tian, and M. Jiang, "A polarization-rotating SIW reflective surface with two sharp band edges," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 130-134, 2016.
doi:10.1109/LAWP.2015.2433174

15. Zhong, T., H. Zhang, Wu, R., Y. Lin, and Z. Xu, "Design of miniaturized dual-band bandstop frequency surface," Journal of Air Force Engineering University: Natural Science Edition, Vol. 10, No. 3, 86-90, 2016.

16. Zhang, L., G. Yang, Q. Wu, and J. Hua, "A novel active frequency selective surface with wideband tuning range for EMC purpose," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4534-4537, Nov. 2012.
doi:10.1109/TMAG.2012.2202099

17. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, May 2012.
doi:10.1109/TAP.2012.2189701

18. Shi, Y., W. Zhuang, W. Tang, C. Wang, and , "Modeling and analysis of miniaturized frequency-selective surface based on 2.5-dimensional closed loop with additional transmission pole," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 346-351, Jan. 2016.
doi:10.1109/TAP.2015.2500609