Vol. 60
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-04-27
Broadband Epsilon Negative Transmission Line Resonant Antenna with AIS Loading
By
Progress In Electromagnetics Research Letters, Vol. 60, 1-7, 2016
Abstract
A metamaterial-based broadband antenna loaded with artificial impedance surface (AIS) is presented in this letter. Two metallic vias connect a Y-shaped patch to the ground plane. The patch, two metallic vias, and the AIS compose an epsilon negative (ENG) transmission line (TL). The asymmetry Y shaped patch and the AIS bring about the first-order resonance (FOR) and second-order resonance (SOR) modes, which can be merged into one passband to yield a wideband property. The proposed ENG-TL resonant antenna has the advantages of compact size, wide bandwidth, and high gain, which can be applied to portable and handheld communication system.
Citation
Liang-Yuan Liu, and Bing-Zhong Wang, "Broadband Epsilon Negative Transmission Line Resonant Antenna with AIS Loading," Progress In Electromagnetics Research Letters, Vol. 60, 1-7, 2016.
doi:10.2528/PIERL16022701
References

1. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, No. 5, 295-328, 2005.
doi:10.2528/PIER04070701

2. Jang, T., J. Choi, and S. Lim, "Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on vialess single layer," IEEE Trans. on Antennas Propagat., Vol. 59, No. 2, 363-372, 2011.
doi:10.1109/TAP.2010.2096191

3. Herraiz-Martinez, F. J., V. Gonzalez-Posadas, L. E. Garcia-Munoz, and D. Segovia-Vargas, "Multifrequency and dual-mode patch antennas partially filled with left-handed structures," IEEE Trans.on Antennas Propagat., Vol. 56, No. 8, 2527-2539, 2008.
doi:10.1109/TAP.2008.927518

4. Nordin, M. A. W., M. T. Islam, and N. Misran, "Design of a compact ultrawideband metamaterial antenna based on the modied split-ring resonator and capacitively loaded strips unit cell," Progress In Electromagnetics Research, Vol. 136, No. 1, 157-173, 2013.
doi:10.2528/PIER12100708

5. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Trans. on Antennas Propagat., Vol. 62, No. 3, 1165-1172, 2014.
doi:10.1109/TAP.2013.2293788

6. Huang, H., Y. Liu, S. S Zhang, and S. X. Gong, "Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag Lett., Vol. 14, No. 2, 662-665, 2015.
doi:10.1109/LAWP.2014.2376969

7. Bala, B. D., M. K. A. Rahim, and N. A. Murad, "A dual mode metamaterial antenna is proposed for wideband applications," Microwave Optical Technol Lett., Vol. 56, No. 8, 1846-1850, 2014.
doi:10.1002/mop.28471

8. Bala, B. D., M. K. A. Rahim, and N. A. Murad, "Bandwidth enhancement metamaterial antenna based on transmission line approach," Microwave Optical Technol Lett., Vol. 57, No. 1, 252-256, 2015.
doi:10.1002/mop.28821

9. Niu, B. J. and Q. Y. Feng, "Epsilon negative zeroth- and first-order resonant antennas with extended bandwidth and high efficiency," IEEE Trans. on Antennas Propagat., Vol. 61, No. 12, 5878-5884, 2013.
doi:10.1109/TAP.2013.2281357

10. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. on Antennas Propagat., Vol. 52, No. 9, 24032414, 2004.
doi:10.1109/TAP.2004.834135

11. Dong, Y. D., H. Toyao, and T. Itoh, "Compact circularly-polarized patch antenna loaded with metamaterials," IEEE Trans. on Antennas Propagat., Vol. 59, No. 11, 4329-4333, 2011.
doi:10.1109/TAP.2011.2164223

12. Dong, Y. D., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators," IEEE Trans. on Antennas Propagat., Vol. 60, No. 2, 772-785, 2012.
doi:10.1109/TAP.2011.2173120

13. Xu, H. X., G. M.Wang, J. G. Liang, M. Q. Qi, and X. Gao, "Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators," IEEE Trans. on Antennas Propagat., Vol. 61, No. 7, 3442-3450, 2013.
doi:10.1109/TAP.2013.2255855

14. Itoh, A., T. Lai, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
doi:10.1109/MMW.2004.1337766

15. Park, J. H., Y. H. Ryu, J. G. Lee, and J. H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. on Antennas Propagat., Vol. 55, No. 12, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505