Vol. 47
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-13
Study of UPML Absorbing Boundary Condition for the Five-Step LOD-FDTD Method
By
Progress In Electromagnetics Research M, Vol. 47, 181-189, 2016
Abstract
In this paper, the uniaxial anisotropic perfectly matched layer (UPML) absorbing boundary condition in unconditionally stable five-step locally one-dimensional finite-difference time-domain (LOD5-FDTD) method is deduced. The UPML absorbing boundary condition (ABC) is validated based on comparison with a simulation in larger domain (and thus without reflection) in the first test. Then using a sinusoidal source, target field phase distribution surrounded by the UPML-ABC is analyzed. The results further illustrate the stability and efficiency of the UPML absorbing boundary condition.
Citation
Lixia Yang, Xuejian Feng, and Lunjin Chen, "Study of UPML Absorbing Boundary Condition for the Five-Step LOD-FDTD Method," Progress In Electromagnetics Research M, Vol. 47, 181-189, 2016.
doi:10.2528/PIERM16022304
References

1. Saxena, A. K. and K. V. Srivastava, "A three-dimensional unconditionally stable five-step LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 62, No. 3, 1321-1329, Mar. 2014.
doi:10.1109/TAP.2013.2293790

2. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBMJ, Vol. 11, 215-234, Mar. 1967.
doi:10.1147/rd.112.0215

3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory. Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075

4. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, Nov. 1999.
doi:10.1109/75.808026

5. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166

6. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544

7. Do Nascimento, V. E., B. H. V. Borges, and F. L. Teixeira, "Split-field PML implementations for the unconditionally stable LOD-FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 7, 398-400, Jul. 2006.
doi:10.1109/LMWC.2006.877132

8. Ahmed, I., E. Li, and K. Krohne, "Convolutional perfectly matched layer for an unconditionally stable LOD-FDTD method," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 816-819, Dec. 2007.
doi:10.1109/LMWC.2007.910458

9. Gedney, S. D., "An Anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antenna Propag., Vol. 44, No. 12, 1630-1639, Dec. 1996.
doi:10.1109/8.546249

10. Sun, W., N. G. Loeb, and Q. Fu, "Finite-difference time domain solution of light scattering and absorption by particles in an absorbing medium," Appl. Opt., Vol. 41, 5728-5743, Sep. 2002.
doi:10.1364/AO.41.005728

11. Sun, W., H. Pan, and G. Videen, "General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface," Appl. Opt., Vol. 48, 6015-6025, Nov. 2009.

12. Wei, B., S. Zhang, F. Wang, and D. Ge, "A novel UPML FDTD absorbing boundary condition for dispersive media," Waves in Random and Complex Media, Vol. 20, 511-527, Aug. 2010.
doi:10.1080/17455030.2010.496005

13. Liang, F. and G. Wang, "Study of Mur's and UPML absorbing boundary condition for the LOD-FDTD method," ICMMT, Vol. 2, 947-949, 2008.

14. Ahmed, I., E. H. Khoo, and L. Erping, "Development of the CPML for three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antenna Propag., Vol. 58, No. 3, 832-837, Mar. 2010.
doi:10.1109/TAP.2009.2039334

15. Omar, R., "Efficient LOD-SC-PML formulations for electromagnetic fields in dispersive media," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 6, 297-299, 2012.
doi:10.1109/LMWC.2012.2197819

16. Taflove, A. and S. C. Hagness, Computational electrodynamics the finite-difference time-domain method, 3rd Ed., 293, Artech House, 2005.