Vol. 68
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-06-02
Modified RANSAC Method for Three-Dimensional Scattering Center Extraction at a Single Elevation
By
Progress In Electromagnetics Research B, Vol. 68, 89-103, 2016
Abstract
In this paper, we focus on the 3D SC model reconstruction from data with wide azimuthal aperture at a single elevation. Since the existing method is difficult to implement for high-frequency signal or large-size target, we propose a modified RANSAC method for the extraction. In our approach, the 3D positions of the SCs are estimated from the 1D SCs via a modified RANSAC method. Then the scattering coefficients are refined via a linear least squares algorithm. The approach is robust with noise because the RANSAC method is able to tolerate a tremendous fraction of outliers. Moreover, it does not suffer from limited accuracy caused by the discretization of the parameter space in [13]. Experiments demonstrate the effectiveness of the proposed approach.
Citation
Qinglin Zhai, Jiemin Hu, Xingwei Yan, Ronghui Zhan, Jianping Ou, and Jun Zhang, "Modified RANSAC Method for Three-Dimensional Scattering Center Extraction at a Single Elevation," Progress In Electromagnetics Research B, Vol. 68, 89-103, 2016.
doi:10.2528/PIERB16020508
References

1. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, No. 2, 116-130, Feb. 1962.
doi:10.1364/JOSA.52.000116

2. Potter, L. C., D. M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Trans. Antennas Propag., Vol. 43, No. 5, 1058-1067, Oct. 1995.

3. Hurst, M. P. and R. Mittra, "Scattering center analysis via Prony's method," IEEE Trans. Antennas Propag., Vol. 35, No. 5, 986-988, Aug. 1987.
doi:10.1109/TAP.1987.1144210

4. Potter, L. C. and R. L. Moses, "Attributed scattering centers for SAR ATR," IEEE Trans. Image Process., Vol. 6, No. 1, 79-91, Jan. 1997.
doi:10.1109/83.552098

5. Bhalla, R., J. Moore, and H. Ling, "A global scattering center representation of complex targets using the shooting and bouncing ray technique," IEEE Trans. Antennas Propag., Vol. 45, No. 5, 1850-1856, Dec. 1997.
doi:10.1109/8.650204

6. Zhou, J., H. Zhao, Z. Shi, and Q. F, "Global scattering center model extraction of radar targets based on wideband measurements," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2051-2060, Jul. 2008.
doi:10.1109/TAP.2008.924698

7. Zhai, Q. L., W. Wang, J. M. Hu, and J. Zhang, "Azimuth nonlinear chirp scaling integrated with range chirp scaling algorithm for highly squinted SAR imaging," Progress In Electromagnetics Research, Vol. 143, 165-185, 2013.
doi:10.2528/PIER13080608

8. Hu, J. M., W. Zhou, Y. W. Fu, X. Li, and N. Jing, "Uniform rotational motion compensation for ISAR based on phase cancellation," IEEE Geosci. Remote Sensing Lett., Vol. 8, No. 4, 636-640, Jul. 2011.
doi:10.1109/LGRS.2010.2098841

9. Hu, J. M., J. Zhang, Q. L. Zhai, R. H. Zhan, and D. W. Lu, "ISAR imaging using a new stepped-frequency signal format," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 7, 4291-4305, Jul. 2014.

10. Margarit, G., J. J. Mallorqui, and X. Fabregas, "Single-pass polarimetric SAR interferometry for vessel classification," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3494-3502, Nov. 2007.
doi:10.1109/TGRS.2007.897437

11. Margarit, G., J. J. Mallorqui, J. Fortuny-Guasch, and C. Lopez-Martinez, "Exploitation of ship scattering in polarimetric SAR for an improved classification under high clutter conditions," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 4, 1224-1235, Apr. 2009.
doi:10.1109/TGRS.2008.2008721

12. Zhang, J., J. Hu, Y. Gao, R. Zhan, and Q. Zhai, "Three-dimensional scattering centers extraction of radar targets using high resolution techniques," Progress In Electromagnetics Research M, Vol. 37, 127-137, 2014.
doi:10.2528/PIERM14041509

13. Zhou, J., Z. Shi, and Q. Fu, "Three-dimensional scattering center extraction based on wide aperture data at a single elevation," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 3, 1638-1655, Mar. 2015.
doi:10.1109/TGRS.2014.2346509

14. Fisher, M. and R. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography," Comm. of the ACM, Vol. 24, No. 6, 381-395, 1981.
doi:10.1145/358669.358692

15. Kim, T. J. and Y. J. Im, "Automatic satellite image registration by combination of matching and random sample consensus," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 5, 1111-1117, May 2003.
doi:10.1109/TGRS.2003.811994

16. Chum, O. and J. Matas, "Optimal randomized RANSAC," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 30, No. 8, 1472-1482, Aug. 2008.
doi:10.1109/TPAMI.2007.70787

17. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. on Acoust. Speech. Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

18. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Trans. on Acoust. Speech. Signal Processing, Vol. 37, No. 5, 720-741, May 1989.
doi:10.1109/29.17564

19. Huffel, S. V., H. Park, and J. B. Rosen, "Formulation and solution of structured total least norm problems for parameter estimation," IEEE Trans. Signal Process., Vol. 44, No. 5, 2464-2474, Oct. 1996.

20. Hua, Y. and T. K. Sarkar, "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise," IEEE Trans. on Acoust. Speech. Signal Processing, Vol. 38, No. 5, 814-824, Aug. 1987.
doi:10.1109/29.56027

21. Yan, X. W., J. M Hu, G Zhao, J. Zhang, and J. W. Wan, "A new parameter estimation method for GTD model based on modified compressed sensing," Progress In Electromagnetic Research, Vol. 141, 553-575, 2013.
doi:10.2528/PIER13052017

22. Dai, D. H., X. S. Wang, Y. L. Chang, J. H. Yang, and S. P. Xiao, "Fully-polarized scattering center extraction and parameter estimation: P-SPRIT algorithm," Proc. Int. Conf. Radar, CIE 2006, 1-4, 2006.
doi:10.1109/ICR.2006.343265