Vol. 59
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-03-15
Design of Dual Band-Notched CPW-Fed UWB Planar Monopole Antenna Using Microstrip Resonators
By
Progress In Electromagnetics Research Letters, Vol. 59, 51-56, 2016
Abstract
In this paper, a new coplanar waveguide (CPW) fed ultra-wideband (UWB) planar monopole antenna with dual band-reject characteristics is proposed. Two resonators of different lengths are employed at the bottom layer to create two notches at the frequency of interest. The proposed fabricated antenna works from 2.8 to 11.34 GHz with two notched bands which cover the WLAN (5.725-5.825 GHz) and ITU (8.025-8.4 GHz) bands. The proposed antenna is fabricated and measured for verification purposes. Good agreement between the measurement and simulation is found.
Citation
Hany Ahmed Atallah, Adel Bedair Abdel-Rahman, Kuniaki Yoshitomi, and Ramesh K. Pokharel, "Design of Dual Band-Notched CPW-Fed UWB Planar Monopole Antenna Using Microstrip Resonators," Progress In Electromagnetics Research Letters, Vol. 59, 51-56, 2016.
doi:10.2528/PIERL16020302
References

1. Abbas, S. M., Y. Ranga, Anand K. Verma, and K. P. Esselle, "A simple ultra wideband printed monopole antenna with high band rejection and wide radiation patterns," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4816-4820, Sep. 2014.
doi:10.1109/TAP.2014.2330585

2. Wu, Z.-H., F. W., X.-W. Shi, and W.-T. Li, "A compact quad band-notched UWB monopole antenna loaded one lateral L-shaped slot," Progress In Electromagnetics Research, Vol. 139, 303-315, 2013.
doi:10.2528/PIER13022714

3. Lee, D. H., H. Y. Yang, and Y.-K. Cho, "Ultra-wideband tapered slot antenna with dual band-notched characteristics," IET Microwave Antennas Propagation, Vol. 8, No. 1, 29-38, 2014.
doi:10.1049/iet-map.2013.0116

4. Trad, I. B., J. M. Floch, H. Rmili, L. Laadhar, and M. Drissi, "Planar elliptic broadband antenna with wide range reconfigurable narrow notched bands for multi-standard wireless communication devices," Progress In Electromagnetics Research, Vol. 145, 69-80, 2014.
doi:10.2528/PIER13122701

5. Peng, L. and C.-L. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1074-1081, 2011.
doi:10.1109/TMTT.2011.2114090

6. Nouri, A. and G. R. Dadashzadeh, "A compact UWB band-notched printed monopole antenna with defected ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1178-1184, 2011.
doi:10.1109/LAWP.2011.2171312

7. Satyanarayana, B. and S. Mulgi, "Design of planar band-notched monopole antenna for 2.4 GHz WLAN and UWB applications," Microwave and Optical Technology Letters, Vol. 5, No. 1, 249-2501, 201.

8. Zhang, Y.-P. and C.-M. Li, "Design of small dual band-notched UWB slot antenna," Electronics Letters, Vol. 51, No. 22, 1727-1728, 2015.
doi:10.1049/el.2015.1321

9. Chen, L., Y.-F. Liu, and P.-C.Wu, "Design of compact asymmetric coplanar strip-fed UWB antenna with dual band-notched characteristics," Progress In Electromagnetics Research Letters, Vol. 47, 103-109, 2014.
doi:10.2528/PIERL14062204

10. Kalteh, A. A., G. R. Dadash Zadeh, M. Naser-Moghadasi, and B. S. Virdee, "Ultra-wideband circular slot antenna with reconfigurable notch band function," IET Microwave Antennas Propagation, Vol. 6, No. 1, 108-112, 2012.
doi:10.1049/iet-map.2011.0125

11. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications Theory Analys and Design, 1st Ed., Wiley & Sons, 2001.
doi:10.1002/0471221619

12. CST Microwave Studio, ver. 2015, , Computer Simulation Technology AG, Japan, AET, 2015.