Vol. 61
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-06-24
A Circularly-Polarized Microstrip Antenna with Quad-Band Combination
By
Progress In Electromagnetics Research Letters, Vol. 61, 31-38, 2016
Abstract
In this paper, a novel quad-band combination of circularly-polarized microstrip antenna is proposed. This antenna has multi-frequency and quad-polarization with multiple coaxial probes, which cover four bands of the BeiDou navigation system (BDS), meeting different application requirements. By using a stacked structure to achieve feed and using symmetrical slotted method to place the coaxial probes, the multi-frequency antenna is connected together through the middle co-aperture. Meanwhile, the feed position and size are constantly optimized until get the most suitable one, and the necessary perturbation is obtained. We also introduce a broadband stripline 90° bridge. Ultimately, the circularly-polarized and multi-frequency operation is achieved. Furthermore, the novel design enables easy implementation, miniaturization, wide band, which can meet the application requirements and promote the development of the BDS, which can be combined with the Internet of Things technology, applied to life and production.
Citation
Wei Wang, Meng-Jiang Xing, and Xuyue Guo, "A Circularly-Polarized Microstrip Antenna with Quad-Band Combination," Progress In Electromagnetics Research Letters, Vol. 61, 31-38, 2016.
doi:10.2528/PIERL16012807
References

1. Lassiter, E. M., "Navstar global positioning system: a satellite based microwave navigation system," 1975 IEEE-MTT-S International Microwave Symposium, 334-334, 1975.

2. Yonezawa, K., "Evaluation of Geometric Performance of Global Positioning System," IEEE Transactions on Aerospace and Electronic Systems, Vol. 14, No. 3, 533-539, 1978.

3. Dale, S. A. and P. Daly, "The Soviet Union’s GLONASs navigation satellites," Aerospace and Electronic Systems Magazine, IEEE, Vol. 2, No. 5, 13-17, 1987.
doi:10.1109/MAES.1987.5005392

4. Dale, S. A. and P. Daly, "Developments in interpretation of the GLONASS navigation satellite," Proceedings of the IEEE 1988 National Aerospace and Electronics Conference, 1988. NAECON 1988, 292-297, 1988.
doi:10.1109/NAECON.1988.195028

5. Hu, H. and C. Yuan, "Performance analysis of galileo global position system," 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Vol. 1, 396-399, 2009.
doi:10.1109/PEITS.2009.5406986

6. Chamberlain, S. M., "Combined GPS/GLONASS navigation," NTC’91., National Telesystems Conference, Proceedings, 205-210, 1991.
doi:10.1109/NTC.1991.148017

7. "IEEE standard for definitions of terms for antennas," IEEE Std 145-2013 (Revision of IEEE Std 145-1993), 1-50, 2014.

8. Chen, C. and X. Zhang, "Simulation analysis of positioning performance of BeiDou-2 satellite navigation system," 2010 2nd International Conference on Advanced Computer Control (ICACC), Vol. 4, 148-152, 2010.
doi:10.1109/ICACC.2010.5486952

9. Chen, J.-C., D.-J. Zhang, and X.-H. Gao, "Research of BeiDou system in electric power system time service," China International Conference on Electricity Distribution, 2008. CICED 2008, 1-5, 2008.
doi:10.1109/CICED.2008.5211796

10. Schulze, R., R. E. Wallis, R. K. Stilwell, and W. Cheng, "Enabling antenna systems for extreme deep-space mission applications," Proceedings of the IEEE, Vol. 95, No. 10, 1976-1985, 2007.
doi:10.1109/JPROC.2007.905068

11. Lu, X., Y. Liao, B. Li, and L. Deng, "BeiDou integrated disaster reduction application platform," Communications, China, Vol. 12, No. 8, 169-182, 2015.
doi:10.1109/CC.2015.7224699

12. Hu, Q. and M. Zhang, "Design of positioning and sensing network system based on BeiDou," 2014 International Conference on Wireless Communication and Sensor Network (WCSN), 101-105, 2014.
doi:10.1109/WCSN.2014.27

13. Li, J., J. Zhang, B. Zhang, and B. Shen, "Operation and development of beidou navigation satellite system," 2015 International Association of Institutes of Navigation World Congress (IAIN), 1-6, 2015.
doi:10.1109/IAIN.2015.7352218

14. Li, X., F. Wei, and D. Zhang, "A new design of common-aperture and tri-band tri-polarized microstrip antennas," Chinese Journal of Electron Devices, Vol. 38, No. 2, 250-253, 2015.

15. Song, Y., L. Liu, and G. Han, "Antenna design for the BeiDou multiband microstrip navigation system," Electronic Sic. & Apr., Vol. 26, No. 4, 137-139, 2013.

16. Li, S., J. Li, X. Gu, H. Wang, C. Li, J. Wu, and M. Tang, "Reconfigurable all-band RF CMOS transceiver for GPS/GLONASS/Galileo/BeiDou with digitally assisted calibration," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 23, No. 9, 1814-1827, 2015.
doi:10.1109/TVLSI.2014.2348593

17. Li, X., G. Dick, C. Lu, M. Ge, T. Nilsson, T. Ning, J. Wickert, and H. Schuh, "Multi-GNSS meteorology: Real-time retrieving of atmospheric water vapor from BeiDou, Galileo, GLONASS, and GPS observations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 12, 6385-6393, 2015.
doi:10.1109/TGRS.2015.2438395

18. Liu, Z., S. Fang, S. Zhu, D. Chen, J. Cao, L. Fu, and Y. Luo, "BeiDou navigation terminal multi-mode asymmetric slots circularly polarized microstrip antenna," 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), 382-385, 2014.

19. Chu, Q., W. Lin, W. Lin, and S. Du, "Broadband quadrifilar helix antenna with compact feeding network," Acta Electronica Sinica, Vol. 41, No. 4, 722-726, 2013.

20. Zhang, J., "Beidou satellite navigation RF receiver chip of IF Band-pass filter,", Xidian University, 2014.

21. Xu, X., RF Simulation Design Examples by HFSS, Beijing Electron Industry Press, 2015.