1. Abatzoglou, T. J. and G. O. Gheen, "Maximum likelihood motion compensation of a wideband linear FM radar waveform," The Thirtieth Asilomar Conference on Signals, Systems and Computers, Vol. 1, 481-485, CA, USA, Nov. 3-6, 1996.
doi:10.1109/ACSSC.1996.600957
2. Liu, Y., S. Zhang, D. Zhu, and X. Li, "A novel speed compensation method for ISAR imaging with low SNR," Sensors, Vol. 2015, No. 15, 18402-18415, Jul. 2015.
3. Camp, W. W., J. T. Mayhan, and R. M. O’Donnell, "Wideband radar for ballistic missile defense and Range-Doppler imaging for satellites," Lincoln Laboratory Journal, Vol. 12, No. 2, 267-280, Feb. 2000.
4. Delaney, W. P. and W. W. Ward, "Radar development at Lincoln Laboratory: An overview of the first fifty years," Lincoln Laboratory Journal, Vol. 12, No. 2, 147-166, Feb. 2000.
5. Steudel, F., "An improved process for Phase-Derived-Range measurements,", World Intellectual Property Organization Patent, WO 2005 017 553A1, Feb. 24, 2005.
6. Steudel, F., "Process for Phase-Derived-Range measurements,", U.S. Patent 2005 030 222A1, Feb. 10, 2005.
7. Cao, Y., X. Qu, and P. Huang, "Accurate-velocity-measurement method for wideband radar based on keystone transform," Systems Engineering and Electronics, Vol. 31, No. 1, 1-4, Jan. 2009.
8. Liu, H. and J. Lu, "Target motion compensation algorithm based on keystone transform for wideband pulse Doppler radar," Transactions of Beijing Institute of Technology, Vol. 32, No. 6, 625-630, Jun. 2012.
9. Li, Y., M. Xing, J. Su, Y. Quan, and Z. Bao, "A New algorithm of ISAR imaging for maneuvering targets with low SNR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 1, 543-557, Jan. 2013.
doi:10.1109/TAES.2013.6404119
10. Liu, Y., H. Meng, G. Li, and X. Wang, "Velocity estimation and range shift compensation for high range resolution profiling in stepped-frequency radar," IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 4, 791-795, Oct. 2010.
doi:10.1109/LGRS.2010.2047492
11. Berizzi, F., M. Martorella, A. Cacciamano, et al. "A contrast-based algorithm for synthetic range profile motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 10, 3053-3062, Oct. 2008.
doi:10.1109/TGRS.2008.2002576
12. Liu, Y., D. Zhu, X. Li, and Z. Zhuang, "Micromotion characteristic acquisition based on wideband radar phase," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 6, 3650-3657, Jun. 2014.
doi:10.1109/TGRS.2013.2274478
13. Zhu, D., Y. Liu, K. Huo, and X. Li, "A novel high-precision phase-derived-range method for direct sampling LFM radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 2, 1131-1141, Feb. 2016.
doi:10.1109/TGRS.2015.2474144
14. Song, P., H. Meng, T. Huang, and Y. Liu, "A novel target motion compensation method for randomized stepped frequency ISAR," 2013 Asilomar Conference on Signals, Systems and Computers, 917-921, Pacific Grove, CA, Nov. 3-6, 2013.
15. Mohapatra, B. B., S. Rajagopal, and V. A. Abid Hussain, "Translational motion estimation and compensation in inverse synthetic aperture radar," 2014 IEEE International Conference on Electronics, Computing and Communication Technologies, 1-5, Bangalore, Jan. 6-7, 2014.
16. Kathree, U., W. Nel, V. J. van Rensburg, and A. K. Mishra, "Investigation of hopped frequency waveforms for range and velocity measurements of radar targets," 2015 IEEE Radar Conference, 475-480, Johannesburg, Oct. 27-30, 2015.
17. Bucciarelli, M., D. Pastina, B. Errasti-Alcala, and P. Braca, "Translational velocity estimation by means of bistatic ISAR techniques," 2015 IEEE International Geoscience and Remote Sensing Symposium, 1921-1924, Milan, Jul. 26-31, 2015.
18. Brisken, S. and J. G. Worms, "ISAR motion parameter estimation via multilateration," 2011 Microwaves, Radar and Remote Sensing Symposium, 190-194, Kiev, Ukraine, Aug. 25-27, 2011.
19. Corretja, V., E. Grivel, Y. Berthoumieu, J. M. Quellec, T. Sfez, and S. Kemkemian, "Target radial velocity estimation robust against additive disturbances for ISAR application," 2011 IEEE CIE International Conference on Radar, 670-673, Chengdu, China, Oct. 24-27, 2011.
20. Berger, T. and S. E. Hamran, "An efficient scaled maximum likelihood algorithm for translational motion estimation in ISAR imaging," 2010 IEEE Radar Conference, 75-80, Washington, DC, May 10-14, 2010.
21. Aprile, A., D. Meledandri, T. M. Pellizzeri, and A. Mauri, "A new approach for estimation and compensation of target translational motion in ISAR imaging," 2008 IEEE Radar Conference, 1-6, Rome, May 26-30, 2008.
22. Lin, Q., B. Yuan, Y. Zhang, and Z. Chen, "Design and implementation of IF signal highspeed acquisition and real-time storage system for wideband radar," 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, 2022-2026, Jilin, China, Aug. 19-22, 2011.
23. Lin, Q., Z. Chen, Y. Zhang, and J. Lin, "Coherent phase compensation method based on direct IF sampling in wideband radar," Progress In Electromagnetics Research, Vol. 136, 753-764, 2013.
doi:10.2528/PIER12122203
24. Zhang, L., J. Sheng, J. Duan, et al. "Translational motion compensation for ISAR imaging under low SNR by minimum entropy," EURASIP Journal on Advances in Signal Processing 2013, Vol. 2013, No. 33, 1-19, 2013.
25. Chen, C. C. and H. C. Andrews, "Target-motion-induced radar imaging," IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 1, 2-14, Jan. 1980.
doi:10.1109/TAES.1980.308873
26. Wang, J. and D. Kasilingam, "Global range alignment for ISAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 1, 351-357, Jan. 2003.
doi:10.1109/TAES.2003.1188917
27. Zhu, D., L. Wang, Y. Yu, Q. Tao, and Z. Zhu, "Robust ISAR range alignment via minimizing the entropy of the average range profile," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 2, 204-208, Apr. 2009.
doi:10.1109/LGRS.2008.2010562
28. Itoh, T. M. and G. W. Donohoe, "Motion compensation for ISAR via centroid tracking," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 7, 1191-1197, Jul. 1996.
29. Ye, W., T. S. Yeo, and Z. Bao, "Weighted least-squares estimation of phase errors for SAR/ISAR autofocus," IEEE Transactions on Geosciences and Remote Sensing, Vol. 37, No. 9, 2487-2494, Sep. 1999.
doi:10.1109/36.789644
30. Eichel, P. H. and C. V. Jakowatz, "Phase-gradient algorithm as an optimal estimator of the phase derivative," Optics Letters, Vol. 14, No. 20, 1101-1103, 1989.
doi:10.1364/OL.14.001101
31. Li, X., G. Liu, and J. Ni, "Autofocusing of ISAR imaging based on entropy minimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 4, 1240-1251, Apr. 1999.
doi:10.1109/7.805442
32. Martorella, M., F. Berizzi, and B. Haywood, "Contrast maximization based technique for 2-D ISAR autofocusing," IEE Proceedings on Radar, Sonar and Navigation, Vol. 52, No. 4, 253-262, Apr. 2005.
doi:10.1049/ip-rsn:20045123
33. Xu, R., Z. Cao, and Y. Liu, "A new method of motion compensation for ISAR," 1990 IEEE International Radar Conference, 234-237, Arlington, VA, May 7-10, 1990.