Vol. 61
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-06-07
Orbital Angular Momentum Radiation from Circular Patches
By
Progress In Electromagnetics Research Letters, Vol. 61, 13-18, 2016
Abstract
Orbital angular momentum (OAM) with a huge potential application in multiplexing and coding has become the subject of intense research in recent years. This paper presents a method to generate radio beams carrying OAM based on a circular patch antenna. A 3 dB quadrature hybrid is employed in the design to enable the circular patch to reconfigure opposite OAM states of a radiated field. The results of numerical simulations are presented to show that the circular patch radiates two OAM modes with opposite rotation directions simultaneously. The proposed circular patch is believed to be significant to the wireless communication applications due to its simple geometry, low cost, and OAM mode reconfiguration.
Citation
Fuchun Mao, Tinghua Li, Yu Shao, Jianfeng Yang, and Ming Huang, "Orbital Angular Momentum Radiation from Circular Patches," Progress In Electromagnetics Research Letters, Vol. 61, 13-18, 2016.
doi:10.2528/PIERL16012604
References

1. Willner, A. E., H. Huang, Y. Yan, et al. "Optical communications using orbital angular momentum beams," Advances in Optics and Photonics, Vol. 7, No. 1, 66-106, 2015.

2. Wang, J., S. Li, C. Li, et al. "Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over pol-muxed 22 orbital angular momentum (OAM) modes," Optical Fiber Communication Conference, Optical Society of America, W1H, 4, San Francisco, USA, 2014.

3. Parkvall, S., A. Furusk¨ar, and E. Dahlman, "Evolution of LTE toward IMT-advanced," IEEE Communications Magazine, Vol. 49, No. 2, 84-91, 2011.

4. Bozinovic, N., Y. Yue, Y. Ren, et al. "Terabit-scale orbital angular momentum mode division multiplexing in fibers ," Science, Vol. 340, No. 6140, 1545-1548, 2013.

5. Wang, J., J. Y. Yang, I. M. Fazal, et al. "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photonics, Vol. 6, No. 7, 488-496, 2012.

6. Yao, A. M. and M. J. Padgett, "Orbital angular momentum: origins, behavior and applications," Advances in Optics and Photonics, Vol. 3, No. 2, 161-204, 2011.

7. Sueda, K., G. Miyaji, N. Miyanaga, et al. "Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses," Optics Express, Vol. 12, No. 15, 3548-3553, 2004.

8. Karimi, E., S. A. Schulz, I. De Leon, et al. "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Science & Applications, Vol. 3, No. 5, e167, 2014.

9. Slussarenko, S., A. Murauski, T. Du, et al. "Tunable liquid crystal q-plates with arbitrary topological charge," Optics Express, Vol. 19, No. 5, 4085-4090, 2011.

10. Heckenberg, N. R., R. McDuff, C. P. Smith, et al. "Generation of optical phase singularities by computer-generated holograms," Optics Letters, Vol. 17, No. 3, 221-223, 1992.

11. Cai, X., J. Wang, M. J. Strain, et al. "Integrated compact optical vortex beam emitters," Science, Vol. 338, No. 6105, 363-366, 2012.

12. Lei, T., M. Zhang, Y. Li, et al. "Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings," Light: Science & Applications, Vol. 4, No. 3, e257, 2015.

13. Shu, W., D. Song, Z. Tang, et al. "Generation of optical beams with desirable orbital angular momenta by transformation media," Physical Review A, Vol. 85, No. 6, 063840, 2012.

14. Chen, W., D. C. Abeysinghe, R. L. Nelson, et al. "Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer," Nano Letters, Vol. 10, No. 6, 2075-2079, 2010.

15. Dall, R., M. D. Fraser, A. S. Desyatnikov, et al. "Creation of orbital angular momentum states with chiral polaritonic lenses," Physical Review Letters, Vol. 113, No. 20, 200404, 2014.

16. Yu, H., H. Zhang, Y. Wang, et al. "Optical orbital angular momentum conservation during the transfer process from plasmonic vortex lens to light," Scientific Reports, Vol. 3, 2013.

17. Thide, B., H. Then, J. Sjoholm, et al. "Utilization of photon orbital angular momentum in the low-frequency radio domain," Physical Review Letters, Vol. 99, No. 8, 087701, 2007.

18. Mohammadi, S. M., L. K. S. Daldorff, J. E. S. Bergman, et al. "Orbital angular momentum in radio — a system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 565-572, 2010.

19. Sjoholm, J. and K. Palmer, "Angular momentum of electromagnetic radiation,", UPTEC F07 56, 2007.

20. Mao, F., M. Huang, J. Zhang, et al. "Graphene assisted radiation adjustable OAM generator," Progress In Electromagnetics Research M, Vol. 42, 31-38, 2015.

21. Tamburini, F., E. Mari, A. Sponselli, et al. "Encoding many channels on the same frequency through radio vorticity: first experimental test," New Journal of Physics, Vol. 14, No. 3, 03300, 2012.

22. Mao, F., M. Huang, and J. J. Yang, Patent Application Number in China, 201410230978.7, 2014.

23. Zheng, S., X. Hui, X. Jin, et al. "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1530-1536, 2015.

24. Hui, X., S. Zheng, Y. Chen, et al. "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scientific Reports, Vol. 5, 2015.

25. Barbuto, M., F. Trotta, F. Bilotti, et al. "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.

26. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.

27. Derneryd, A. G., "Analysis of the microstrip disk antenna element," IEEE Transactions on Antennas & Propagation, Vol. 27, No. 5, 660-664, 1977.