Vol. 47
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-04-15
Tomography SAR Imaging Strategy Based on Block-Sparse Model
By
Progress In Electromagnetics Research M, Vol. 47, 191-200, 2016
Abstract
The compressed sensing (CS) based imaging methods for tomography SAR perform well in the case of large number of baselines. Unfortunately, for the current tomography SAR, the baselines are obtained from many multi-pass acquisitions on the same scene, which is expensive and can be severely affected by temporal decorrelation. In order to reduce the number of baselines, a novel strategy for tomography SAR imaging by introducing the block-sparsity theory into the imaging processing is proposed in this paper. Using neighboring pixels information in reconstruction, the proposed method can overcome the imaging quality limitation imposed by the low number of baselines. The results with simulation data under the additive gaussian noise case are presented to verify the effectiveness of the proposed method.
Citation
Xiao-Zhen Ren, and Fuyan Sun, "Tomography SAR Imaging Strategy Based on Block-Sparse Model," Progress In Electromagnetics Research M, Vol. 47, 191-200, 2016.
doi:10.2528/PIERM16010904
References

1. Curlander, J. C. and R. N. Mcdonough, Synthetic Aperture Radar: System and Signal Processing, John Wiley & Sons, 1991.

2. Floyd, H. and A. J. Lewis, Principles and Applications of Imaging Radar - Manual of Remote Sensing, Wiley, 1998.

3. Morrison, K., J. C. Bennett, and M. Nolan, "Using DInSAR to separate surface and subsurface features," IEEE Transaction on Geoscience and Remote Sensing, Vol. 51, 3424-3430, 2013.
doi:10.1109/TGRS.2012.2226183

4. Barrett, B., P. Whelan, and E. Dwyer, "Detecting changes in surface soil moisture content using differential SAR interferometry," International Journal of Remote Sensing, Vol. 34, 7091-7112, 2013.
doi:10.1080/01431161.2013.813654

5. Reigber, A. and A. Moreira, "First demonstration of airborne SAR tomography using multibaseline L-band data," IEEE Transaction on Geoscience and Remote Sensing, Vol. 38, 2142-2150, 2000.
doi:10.1109/36.868873

6. Reigber, A., F. Lombardini, F. Viviani, M. Nannini, and A. Martinez del Hoyo, "Three-dimensional and higher-order imaging with tomographic SAR: Techniques, applications, issues," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2915-2918, 2015.

7. Lombardini, F. and A. Reigber, "Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data," IEEE International Geoscience and Remote Sensing Symposium 2003, 2014-2016, Toulouse, France, 2003.

8. Lombardini, F., F. Cai, and D. Pasculli, "Spaceborne 3-D SAR tomography for analyzing garbled urban scenarios: Single-look superresolution advances and experiments," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 6, 960-968, 2013.
doi:10.1109/JSTARS.2012.2211339

9. Sauer, S., L. Ferro-Famil, A. Reigber, and E. Pottier, "Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band," IEEE Transaction on Geoscience and Remote Sensing, Vol. 49, 4616-4629, 2011.
doi:10.1109/TGRS.2011.2147321

10. Lombardini, F., M. Pardini, and F. Gini, "Sector interpolation for 3D SAR imaging with baseline diversity data," IEEE 2007 Waveform Diversity and Design Conference, 297-301, Pisa, Italy, 2007.

11. Lombardini, F. and M. Pardini, "First experiment of sector interpolated SAR tomography," IEEE International Geoscience and Remote Sensing Symposium, 21-24, 2010.

12. Fornaro, G., F. Serafino, and F. Soldovieri, "Three-dimensional focusing with multipass SAR data," IEEE Transaction on Geoscience and Remote Sensing, Vol. 41, 507-517, 2003.
doi:10.1109/TGRS.2003.809934

13. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transaction on Information Theory, Vol. 52, 489-509, 2006.
doi:10.1109/TIT.2005.862083

14. Donoho, D., "Compressed sensing," IEEE Transaction on Information Theory, Vol. 52, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

15. Chen, W. and I. J. Wassell, "Optimized node selection for compressive sleeping wireless sensor networks," IEEE Transactions on Vehicular Technology, Vol. 65, 827-836, 2016.
doi:10.1109/TVT.2015.2400635

16. Zhang, Y., S. Wang, G. Ji, and Z. Dong, "Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 10, 116-117, 2015.
doi:10.1002/tee.22059

17. Zhang, Y., Z. Dong, P. Phillips, S. Wang, G. Ji, and J. Yang, "Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging," Information Sciences, Vol. 322, 115-132, 2015.
doi:10.1016/j.ins.2015.06.017

18. Zhu, X. X. and R. Bamler, "Tomographic SAR inversion by L1-norm regularization - The compressive sensing approach," IEEE Transaction on Geoscience and Remote Sensing, Vol. 48, 3839-3846, 2013.
doi:10.1109/TGRS.2010.2048117

19. Budillon, A., A. Evangelista, and G. Schirinzi, "Three-dimensional SAR focusing from multipass signals using compressive sampling," IEEE Transaction on Geoscience and Remote Sensing, Vol. 49, 488-499, 2011.
doi:10.1109/TGRS.2010.2054099

20. Schmitt, M. and U. Stilla, "Compressive sensing based layover separation in airborne single-pass multi-baseline InSAR data," IEEE Geoscience and Remote Sensing Letters, Vol. 10, 313-317, 2013.
doi:10.1109/LGRS.2012.2204230

21. Eldar, Y. C. and M. Mishali, "Robust recovery of signals from a structured union of subspaces," IEEE Transaction on Information Theory, Vol. 55, 5302-5316, 2009.
doi:10.1109/TIT.2009.2030471

22. Eldar, Y. C. and H. Bölcskei, "Block-sparsity: Coherence and efficient recovery," IEEE International Conference on Acoustics, Speech and Signal Processing, 2885-2888, 2009.

23. Eldar, Y. C., P. Kuppinger, and H. Bolcskei, "Block-sparse signals: Uncertainty relations and efficient recovery," IEEE Transaction on Signal Processing, Vol. 58, 3042-3054, 2010.
doi:10.1109/TSP.2010.2044837

24. Aguilera, E., M. Nannini, and A. Reigber, "Multisignal compressed sensing for polarimetric SAR tomography," IEEE Geoscience and Remote Sensing Letters, Vol. 9, 871-875, 2012.
doi:10.1109/LGRS.2012.2185482

25. Fishler, E. and H. Messer, "Detection of signals by information theoretic criteria: General asymptotic performance analysis," IEEE Transactions on Signal Processing, Vol. 50, 1027-1036, 2002.
doi:10.1109/78.995060

26. Xu, J., Y. Pi, and Z. Cao, "Bayesian compressive sensing in synthetic aperture radar imaging," IET Radar, Sonar and Navigation, Vol. 6, 2-8, 2012.
doi:10.1049/iet-rsn.2010.0375