Vol. 47
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-20
A Modified Two Dimensional Volterra-Based Series for the Low-Pass Equivalent Behavioral Modeling of RF Power Amplifiers
By
Progress In Electromagnetics Research M, Vol. 47, 27-35, 2016
Abstract
This work proposes a modified Volterra-based series suitable for the low-pass equivalent behavioral modeling of radio frequency power amplifiers (RFPAs) for wireless communication systems. In a Volterra-based series, the instantaneous sample of the complex-valued output envelope is calculated by the sum of products that depend on the instantaneous and past (up to the memory length M) samples of the complex-valued input envelope. To comply with the constraints imposed by the bandpass behavior of RFPAs, the derivation of the proposed model starts from a general Volterra-based series given by the sum of contributions that include exactly one complex-valued information multiplied by a varying number (ranging from zero up to one less than the polynomial order truncation P) of real-valued amplitude components. A first reduction in the number of parameters is then performed by retaining only the one and two dimensional contributions. A second reduction in the number of parameters is finally achieved by introducing a third truncation factor S. In fact, if this additional truncation factor S is set equal to P-1, the proposed model contains all the two dimensional contributions. Moreover, when S is set equal to 0, the proposed model reduces to the largely adopted generalized memory polynomial (GMP) model. The proposed Volterra-based series retains the important property of being linear in its parameters and, in comparison with previous Volterra-based approaches, can provide a better compromise between number of parameters and modeling error. The proposed model is then compared with the GMP model in a scenario of same number of parameters. When applied to the modeling of input-output data obtained from a circuit-level description of a GaN HEMT Doherty PA excited by a LTE OFDMA signal, the proposed model reduces the normalized mean square error (NMSE) by up to 3.4 dB. Additionally, when applied to the modeling of input-output data measured on a GaN HEMT class AB PA excited by a WCDMA signal, the proposed model reduces the NMSE by up to 1.3 dB.
Citation
Elton John Bonfim, and Eduardo Goncalves de Lima, "A Modified Two Dimensional Volterra-Based Series for the Low-Pass Equivalent Behavioral Modeling of RF Power Amplifiers," Progress In Electromagnetics Research M, Vol. 47, 27-35, 2016.
doi:10.2528/PIERM15122806
References

1. Ye, D., Y. Wu, and Y. Liu, "A tradeoff design of broadband power amplifier in Doherty configuration utilizing a novel coupled-line coupler," Progress In Electromagnetics Research C, Vol. 48, 11-19, 2014.
doi:10.2528/PIERC14011702

2. Ma, C., W. Pan, and Y.-X. Tang, "Design of asymmetrical Doherty power amplifier with reduced memory effects and enhanced back-off efficiency," Progress In Electromagnetics Research C, Vol. 56, 195-203, 2015.
doi:10.2528/PIERC15013002

3. Raychaudhuri, D. and N. B. Mandayam, "Frontiers of wireless and mobile communications," Proc. IEEE, Vol. 100, No. 4, 824-840, 2012.
doi:10.1109/JPROC.2011.2182095

4. Raab, H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 814-826, 2002.
doi:10.1109/22.989965

5. Cripps, S., RF Power Amplifiers for Wireless Communications, Artech House, 2006.

6. Kenington, P. B., High Linearity RF Amplifier Design, Artech House, 2000.

7. Chipansky Freire, L. B., C. de Franca, and E. G. de Lima, "A modified real-valued feed-forward neural network low-pass equivalent behavioral model for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 57, 43-52, 2015.
doi:10.2528/PIERC15022802

8. Mathews, V. and G. Sicuranza, Polynomial Signal Processing, Wiley, 2000.

9. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-166, 2014.
doi:10.2528/PIERC13121201

10. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "A modified generalized memory polynomial model for RF power amplifiers," Progress In Electromagnetics Research Letters, Vol. 47, 97-102, 2014.
doi:10.2528/PIERL14060307

11. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electron. Lett., Vol. 37, No. 23, 1417-31418, 2001.
doi:10.1049/el:20010940

12. Zhu, A., J. C. Pedro, and T. J. Brazil, "Dynamic deviation reduction-based Volterra behavioral modeling of RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4323-4332, 2006.
doi:10.1109/TMTT.2006.883243

13. Morgan, D., Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Trans. Signal Process., Vol. 54, No. 10, 3852-3860, 2006.
doi:10.1109/TSP.2006.879264

14. Lima, E. G., T. R. Cunha, and J. C. Pedro, "A physically meaningful neural network behavioral model for wireless transmitters exhibiting PM-AM/PM-PM distortions," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3512-3521, 2011.
doi:10.1109/TMTT.2011.2171709

15. Isaksson, M., D. Wisell, and D. Ronnow, "A comparative analysis of behavioral models for RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 348-359, 2006.
doi:10.1109/TMTT.2005.860500