Vol. 48
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-05-02
Highly Coherent Supercontinuum Generation in the Normal Dispersion Liquid-Core Photonic Crystal Fiber
By
Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016
Abstract
In this paper, a liquid-core photonic crystal fiber (LCPCF) with small hollow-core filled by chalcogenide material CS2 is designed. The supercontinuum (SC) generation in such a LCPCF with nonlinear coefficient of 3327 W-1•km-1 at 1550 nm and wide normal dispersion regime spanning from 1200 to 2500 nm is numerically studied by solving the generalized nonlinear Schrödinger equation. The influences of the pump pulse parameters on the SC spectral width and coherence are demonstrated, and the optimum pump condition for the SC generation is determined. Our study work can provide an alternative way for obtaining highly coherent SC, which is important for the applications in optical coherence tomography, frequency combs, and ultrashort pulse generation.
Citation
Zheng Guo, Jinhui Yuan, Chongxiu Yu, Xinzhu Sang, Kuiru Wang, Binbin Yan, Lixiao Li, Shuai Kang, and Xue Kang, "Highly Coherent Supercontinuum Generation in the Normal Dispersion Liquid-Core Photonic Crystal Fiber," Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016.
doi:10.2528/PIERM15122302
References

1. Kaminski, C. F., R. S. Watt, A. D. Elder, et al. "Supercontinuum radiation for applications in chemical sensing and microscopy," Applied Physics B, Vol. 92, No. 3, 367-378, 2008.
doi:10.1007/s00340-008-3132-1

2. Nakasyotani, T., H. Toda, T. Kuri, et al. "Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source," Journal of Lightwave Technology, Vol. 24, No. 1, 404, 2006.
doi:10.1109/JLT.2005.859854

3. Morioka, T., K. Mori, S. Kawanishi, and M. Saruwatari, "Multi-WDM-channel GBit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photonics Technology Letters, Vol. 6, No. 3, 365-368, 1994.
doi:10.1109/68.275490

4. Takara, H., T. Ohara, K. Mori, et al. "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electronics Letters, Vol. 36, No. 25, 2089-2090, 2000.
doi:10.1049/el:20001461

5. Moon, S. and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express, Vol. 14, No. 24, 11575-11584, 2006.
doi:10.1364/OE.14.011575

6. Udem, T., R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature, Vol. 416, No. 6877, 233-237, 2002.
doi:10.1038/416233a

7. Jones, D. J., S. A. Diddams, J. K. Ranka, et al. "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science, Vol. 288, No. 5466, 635-639, 2000.
doi:10.1126/science.288.5466.635

8. Agrawal, G. P., Nonlinear Fiber Optics, 4th Ed., 2007.

9. Ranka, J. K., R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Optics Letters, Vol. 25, No. 1, 25-27, 2000.
doi:10.1364/OL.25.000025

10. Omenetto, F. G., N. A. Wolchover, M. R. Wehner, et al. "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Optics Express, Vol. 14, No. 11, 4928-4934, 2006.
doi:10.1364/OE.14.004928

11. Qin, G., X. Yan, C. Kito, et al. "Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber," Optics Letters, Vol. 34, No. 13, 2015-2017, 2009.
doi:10.1364/OL.34.002015

12. Gu, X., M. Kimmel, A. Shreenath, et al. "Experimental studies of the coherence of microstructure-fiber supercontinuum," Optics Express, Vol. 11, No. 21, 2697-2703, 2003.
doi:10.1364/OE.11.002697

13. Genty, G., S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," JOSA B, Vol. 24, No. 8, 1771-1785, 2007.
doi:10.1364/JOSAB.24.001771

14. Hooper, L. E., P. J. Mosley, A. C. Muir, et al. "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Optics Express, Vol. 19, No. 6, 4902-4907, 2011.
doi:10.1364/OE.19.004902

15. Li, P., L. Shi, and Q.-H. Mao, "Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses," Chinese Physics B, Vol. 22, No. 7, 074204, 2013.
doi:10.1088/1674-1056/22/7/074204

16. Yan, P., R. Dong, G. Zhang, et al. "Numerical simulation on the coherent time-critical 2–5 μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile," Optics Communications, Vol. 293, 133-138, 2013.
doi:10.1016/j.optcom.2012.11.093

17. Hartung, A., A. M. Heidt, and H. Bartelt, "Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation," Optics Express, Vol. 19, No. 8, 7742-7749, 2011.
doi:10.1364/OE.19.007742

18. Poli, F., A. Cucinotta, S. Selleri, et al. "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers," IEEE Photonics Technology Letters, Vol. 16, No. 4, 1065-1067, 2004.
doi:10.1109/LPT.2004.824624

19. Saitoh, K. and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Optics Express, Vol. 12, No. 10, 2027-2032, 2004.
doi:10.1364/OPEX.12.002027

20. Bozolan, A., C. J. de Matos, C. Cordeiro, et al. "Supercontinuum generation in a water-core photonic crystal fiber," Optics Express, Vol. 16, No. 13, 9671-9676, 2008.
doi:10.1364/OE.16.009671

21. Zhang, H., S. Chang, J. Yuan, et al. "Supercontinuum generation in chloroform-filled photonic crystal fibers," Optik-International Journal for Light and Electron Optics, Vol. 121, No. 9, 783-787, 2010.
doi:10.1016/j.ijleo.2008.09.026

22. Zhang, R., J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Optics Express, Vol. 14, No. 15, 6800-6812, 2006.
doi:10.1364/OE.14.006800

23. Kedenburg, S., T. Gissibl, T. Steinle, et al. "Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 μm range," Optics Express, Vol. 23, No. 7, 8281-8289, 2015.
doi:10.1364/OE.23.008281

24. Churin, D., T. N. Nguyen, K. Kieu, et al. "Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2," Optical Materials Express, Vol. 3, No. 9, 1358-1364, 2013.
doi:10.1364/OME.3.001358

25. Yiou, S., P. Delaye, A. Rouvie, et al. "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Optics Express, Vol. 13, No. 12, 4786-4791, 2005.
doi:10.1364/OPEX.13.004786

26. Cox, F. M., A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Optics Express, Vol. 14, No. 9, 4135-4140, 2006.
doi:10.1364/OE.14.004135

27. Hult, J., "A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers," Journal of Lightwave Technology, Vol. 25, No. 12, 3770-3775, 2007.
doi:10.1109/JLT.2007.909373

28. Dudley, J. M., G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics, Vol. 78, No. 4, 1135, 2006.
doi:10.1103/RevModPhys.78.1135

29. Klimczak, M., G. Soboń, K. Abramski, et al. "Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump," Optics Express, Vol. 22, No. 26, 31635-31645, 2014.
doi:10.1364/OE.22.031635

30. Zaitsu, S., Y. Kida, and T. Imasaka, "Stimulated Raman scattering in the boundary region between impulsive and nonimpulsive excitation," JOSA B, Vol. 22, No. 12, 2642-2650, 2005.
doi:10.1364/JOSAB.22.002642