1. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature, Vol. 440, 508-511, 2006.
doi:10.1038/nature04594
2. Engheta, N., "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterial," Science, Vol. 317, 1698-1702, 2007.
doi:10.1126/science.1133268
3. Ebbesen, T. W., C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Physics Today, Vol. 61, 44, 2008.
doi:10.1063/1.2930735
4. De Leon, I. and P. Berini, "Amplification of long-range surface plasmons by a dipolar gain medium," Nature Photonics, Vol. 4, 382-387, 2010.
doi:10.1038/nphoton.2010.37
5. He, S., Y. He, and Y. Jin, "Revealing the truth about `trapped rainbow' storage of light in metamaterial," Scientific Reports, Vol. 2, 2012.
6. Gan, Q., Y. J. Ding, and F. J. Bartoli, "Rainbow trapping and releasing at telecommunication wavelengths," Physical Review Letters, Vol. 102, 056801, 2009.
doi:10.1103/PhysRevLett.102.056801
7. Hu, H., D. Ji, X. Zeng, K. Liu, and Q. Gan, "Rainbow trapping in hyperbolic metamaterial waveguide," Scientific Reports, Vol. 3, 2013.
8. Wang, G., H. Lu, and X. Liu, "Trapping of surface plasmon waves in graded grating waveguide system," Applied Physics Letters, Vol. 101, 013111, 2012.
doi:10.1063/1.4733477
9. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Applied Physics Letters, Vol. 102, 201608, 2013.
doi:10.1063/1.4804189
10. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, 8215-8220, 2013.
doi:10.1039/c3nr02027d
11. Koppens, F. H., D. E. Chang, and F. J. Garcia de Abajo, "Graphene plasmonics: A platform for strong light–matter interactions," Nano Letters, Vol. 11, 3370-3377, 2011.
doi:10.1021/nl201771h
12. Fang, Z., S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, et al. "Gated tunability and hybridization of localized plasmons in nanostructured graphene," ACS Nano, Vol. 7, 2388-2395, 2013.
doi:10.1021/nn3055835
13. Novoselov, K. S., A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, et al. "Electric field effect in atomically thin carbon films," Science, Vol. 306, 666-669, 2004.
doi:10.1126/science.1102896
14. Grigorenko, A., M. Polini, and K. Novoselov, "Graphene plasmonics," Nature Photonics, Vol. 6, 749-758, 2012.
doi:10.1038/nphoton.2012.262
15. Bonaccorso, F., Z. Sun, T. Hasan, and A. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, Vol. 4, 611-622, 2010.
doi:10.1038/nphoton.2010.186
16. Politano, A. and G. Chiarello, "Probing Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: A comparative study," Nano Research, 1-10, 2014.
17. Matis, B. R., J. S. Burgess, F. A. Bulat, A. L. Friedman, B. H. Houston, and J. W. Baldwin, "Surface doping and band gap tunability in hydrogenated graphene," ACS Nano, Vol. 6, 17-22, 2012.
doi:10.1021/nn2034555
18. Politano, A., D. Campi, V. Formoso, and G. Chiarello, "Evidence of confinement of the π plasmon in periodically rippled graphene on Ru(0001)," Physical Chemistry Chemical Physics, Vol. 15, 11356-11361, 2013.
doi:10.1039/c3cp51954f
19. Politano., A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, 2014.
doi:10.1039/C4NR03143A
20. Rast, L., T. Sullivan, and V. Tewary, "Stratified graphene/noble metal systems for low-loss plasmonics applications," Physical Review B, Vol. 87, 045428, 2013.
doi:10.1103/PhysRevB.87.045428
21. Liu, Y., T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmon optics," Nano Letters, Vol. 10, 1991-1997, 2010.
doi:10.1021/nl1008019
22. Zentgraf, T., Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, "Plasmonic luneburg and eaton lenses," Nature Nanotechnology, Vol. 6, 151-155, 2011.
doi:10.1038/nnano.2010.282
23. Della Valle, G. and S. Longhi, "Graded index surface-plasmon-polariton devices for subwavelength light management," Physical Review B, Vol. 82, 153411, 2010.
doi:10.1103/PhysRevB.82.153411
24. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, 064302, 2008.
doi:10.1063/1.2891452
25. Wang, W., S. P. Apell, and J. M. Kinaret, "Edge magnetoplasmons and the optical excitations in graphene disks," Physical Review B, Vol. 86, 125450, 2012.
doi:10.1103/PhysRevB.86.125450
26. Fallahi, A. and J. Perruisseau-Carrier, "Design of tunable biperiodic graphene metasurfaces," Physical Review B, Vol. 86, 195408, 2012.
doi:10.1103/PhysRevB.86.195408
27. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, 1291-1294, 2011.
doi:10.1126/science.1202691
28. Mikhailov, S. and K. Ziegler, "New electromagnetic mode in graphene," Physical Review Letters, Vol. 99, 016803, 2007.
doi:10.1103/PhysRevLett.99.016803
29. Zeng, C., X. Liu, and G. Wang, "Electrically tunable graphene plasmonic quasicrystal metasurfaces for transformation optics," Scientific Reports, Vol. 4, 2014.
30. Gao, W., J. Shu, C. Qiu, and Q. Xu, "Excitation of plasmonic waves in graphene by guided-mode resonances," ACS Nano, Vol. 6, 7806-7813, 2012.
doi:10.1021/nn301888e
31. Gutman, A., "Modified luneberg lens," Journal of Applied Physics, Vol. 25, 855-859, 1954.
doi:10.1063/1.1721757
32. Xu, H. J., W. B. Lu, Y. Jiang, and Z. G. Dong, "Beam-scanning planar lens based on graphene," Applied Physics Letters, Vol. 100, 051903, 2012.
doi:10.1063/1.3681799
33. Bolotin, K., K. Sikes, J. Hone, H. Stormer, and P. Kim, "Temperature-dependent transport in suspended graphene," Physical Review Letters, Vol. 101, 096802, 2008.
doi:10.1103/PhysRevLett.101.096802
34. Dorgan, V. E., A. Behnam, H. J. Conley, K. I. Bolotin, and E. Pop, "High-field electrical and thermal transport in suspended graphene," Nano Letters, Vol. 13, 4581-4586, 2013.
doi:10.1021/nl400197w