1. Chakraborty, M., B. Rana, P. Sarkar, and A. Das, "Size reduction of microstrip antenna with slots and defected ground structure," International Journal of Electronics Engineering, Vol. 4, No. 1, 61-64, 2012.
2. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302
3. Elftouh, H., N. A. Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with spiral defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015.
doi:10.2528/PIERL15031003
4. Mahatthanajatuphat, C., S. Saleekaw, and P. Akkaraekthalin, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WIMAX application," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907
5. Shrestha, S., S. R. Lee, and D.-Y. Choi, "New fractal-based miniaturized dual band patch antenna for rf energy harvesting," International Journal of Antennas and Propagation, Vol. 2014, 2014.
6. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888
7. Suganthi, S., S. Raghavan, and D. Kumar, "Miniature fractal antenna design and simulation for wireless applications," IEEE RAICS, 57-61, 2011.
8. Liua, W.-C., C.-M. Wua, and N.-C. Chu, "A compact low profile dual-band antenna for WLAN and WAVE applications," AEU Int. J. Electron. C, Vol. 66, 467-471, 2012.
doi:10.1016/j.aeue.2011.10.009
9. Saraswat, R. K. and M. Kumar, "A frequency band reconfigurable uwb antenna for high gain applications," Progress In Electromagnetics Research B, Vol. 64, 29-45, 2015.
doi:10.2528/PIERB15090103
10. Kumar, M., A. Basu, and S. K. Koul, "UWB printed slot antenna with improved performance in time and frequency domains," Progress In Electromagnetics Research C, Vol. 18, 197-210, 2011.
doi:10.2528/PIERC10090904
11. Kumar, M., A. Basu, and S. K. Koul, "Circuits and active antennas for ultrawideband pulse generation and transmission," Progress In Electromagnetics Research B, Vol. 23, 251-272, 2010.
doi:10.2528/PIERB10052103
12. Su, S.-W., "Compact four loop antenna system for concurrent, 2.4 and 5 GHz WLAN operation," Microw. Opt. Technol. Lett., Vol. 56, No. 1, 208-215, 2014.
doi:10.1002/mop.28020
13. Chien, H. Y., C. Y. D. Sim, and C. H. Lee, "Dual band meander monopole antenna for WLAN operation in laptop computer," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 694-697, 2013.
doi:10.1109/LAWP.2013.2263373
14. Huang, C.-Y. and E.-Z. Yu, "A slot monopole antenna for dual band WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 500-502, 2011.
doi:10.1109/LAWP.2011.2156755
15. Ghatak, R., R. K. Mishra, and D. R. Poddar, "Perturbed Sierpinski carpet antenna with CPW feed for IEEE 802.11a/b WLAN application," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 742-745, 2008.
doi:10.1109/LAWP.2008.2004815
16. Xu, Y., Y.-C. Jiao, and Y.-C. Luan, "Compact CPW-fed printed monopole antenna with triple band characteristics for WLAN/WiMAX applications," Electron. Lett., Vol. 48, No. 24, 1519-1520, 2012.
doi:10.1049/el.2012.3255
17. Sim, C. Y. D., H. D. Chen, K. C. Chiu, and C. H. Chao, "Coplanar waveguide fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications," IET Microw. Antenna Propag., Vol. 6, No. 14, 1529-1535, 2012.
doi:10.1049/iet-map.2012.0174
18. Basaran, S. C., U. Olgun, and K. Sertel, "Multiband monopole antenna with complementary split ring resonators for WLAN and WiMAX applications," Electron. Lett., Vol. 49, No. 10, 636-638, 2013.
doi:10.1049/el.2013.0357
19. Zhang, X.-Q., Y.-C. Jiao, and W.-H. Wang, "Compact wide tri-band slotantenna for WLAN/WiMAX applications," Electron. Lett., Vol. 48, No. 2, 64-65, 2012.
doi:10.1049/el.2011.3376
20. Li, X., X.-W. Shi, W. Hu, P. Fei, and J.-F. Yu, "Compact triband ACS fed monopole antenna employing open ended slots for wireless communication," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 388-391, 2013.
doi:10.1109/LAWP.2013.2252414
21. Liu, P., Y. Zou, B. Xie, X. Liu, and B. Sun, "Compact CPW fed tri band printed antenna with meandering split ring slot for WLAN/WiMAX applications," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 1242-1244, 2012.
22. Xu, H.-X., G.-M.Wang, J.-G. Liang, M.-Q. Qi, and X. Gao, "Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3442-3450, 2013.
doi:10.1109/TAP.2013.2255855
23. Xu, H.-X., G.-M. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008
24. Xu, H.-X., G.-M.Wang, M.-Q. Qi, C.-X Zhang., J.-G. Liang, J.-Q. Gong, and Y.-C. Zhou, "Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas," IEEE Trans. Antennas Propag., Vol. 61, No. 2, 735-747, 2013.
doi:10.1109/TAP.2012.2215298
25. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multi frequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409
26. Basaran, S. C. and Y. E. Erdemli, "A dual band split ring monopole antenna for WLAN applications," Microw. Opt. Technol. Lett., Vol. 51, No. 11, 2685-2688, 2009.
doi:10.1002/mop.24708
27. Dong, Y., H. Toyao, and T. Itoh, "Design and characterization of miniaturized patch antennas loaded with complementary split ring resonators," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 772-785, 2012.
doi:10.1109/TAP.2011.2173120
28. Xiong, J., H. Li, Y. Jin, and S. He, "Modified TM020 mode of a rectangular patch antenna partially loaded with metamaterial for dual band applications," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1006-1009, 2009.
doi:10.1109/LAWP.2009.2030771
29. Zhu, J. and G. V. Eleftheriades, "Dual band metamaterial inspired small monopole antenna for WiFi applications," Electron. Lett., Vol. 45, No. 22, 1104-1106, 2009.
doi:10.1049/el.2009.2107
30. Computer Simulation Technology - CST(Microwave Studio MWS) Version-2014.
doi:10.1049/el.2009.2107
31. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-9, 2002.
32. Chen, H., J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, and J. A. Kong, "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Opt. Express, Vol. 14, No. 26, 12944-12949, 2006.
doi:10.1364/OE.14.012944
33. Saha, C. and J. Y. Siddiqui, "Versatile CAD formulation for estimation of the resonant frequency and magnetic polarizability of circular split ring resonators," Int. J. RF Microw. Comput. Aided Eng., Vol. 21, 432-438, 2011.
doi:10.1002/mmce.20533
34. Ray, K. P. and G. Kumar, "Determination of resonant frequency of microstrip antennas," Microw. Opt. Technol. Lett., Vol. 23, 114-117, 1999.
doi:10.1002/(SICI)1098-2760(19991020)23:2<114::AID-MOP15>3.0.CO;2-G
35. Rahimi, M., F. B. Zarrabi, R. Ahmadian, Z. Mansouri, and A. Keshtkar, "Miniaturization of antenna for wireless application with difference metamaterial structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902