Vol. 45
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-12
Torque and Ripple Improving of a SR Motor Using Robust Particle Swarm Optimization of Drive Current and Dimension
By
Progress In Electromagnetics Research M, Vol. 45, 195-207, 2016
Abstract
In this paper, the robust optimization shape and drive of switched reluctance motors (SRM) are discussed using robust particle swarm optimization (RPSO). The shape optimum goal of the algorithm was found for maximum torque value and minimum torque ripple, following changing the geometric parameters. The drive optimum aim of the algorithm was found minimum torque ripple, following changing the current profiles. The optimization process was carried out using a combination of RPSO and Finite Element Method (FEM). Fitness value was calculated by FEM analysis using COMSOL4.2, and the RPSO was realized by MATLAB 2011. The proposed method has been applied to two case studies and also compared with seeker optimization algorithm. The results show that the optimized SRM using RPSO has higher torque value, lower torque ripple and higher robustness, indicating the validity of this methodology for SRM design and implementation.
Citation
Abbas Ketabi, Ata Yadghar, and Mohammad Javad Navardi, "Torque and Ripple Improving of a SR Motor Using Robust Particle Swarm Optimization of Drive Current and Dimension," Progress In Electromagnetics Research M, Vol. 45, 195-207, 2016.
doi:10.2528/PIERM15112207
References

1. Arkadan, A. A., H. H. Shehadeh, R. H. Brown, and N. A. O. Demerdash, "Effects of chopping on core losses and inductance profiles of SRM drives," IEEE Transactions on Magnetics, Vol. 33, No. 2, 2105-2108, 1997.
doi:10.1109/20.582738

2. Vujicic, V. P., "Minimization of torque ripple and copper losses in switched reluctance drive," IEEE Transactions on Power Electronics, Vol. 27, No. 1, 388-399, 2012.
doi:10.1109/TPEL.2011.2158447

3. Fort, J., B. Skala, and V. Kus, "The torque ripple reduction at the drive with the switched reluctance motor," 15th International Power Electronics and Motion Control Conference (EPE/PEMC), DS2a.16-1-DS2a.16-4, IEEE, 2015.

4. Niapour, S. A., K. H. Mozaffari, M. Tabarraie, and M. R. Feyzi, "A new robust speed-sensorless control strategy for high-performance brushless DC motor drives with reduced torque ripple," Control Engineering Practice, Vol. 24, 42-54, 2014.
doi:10.1016/j.conengprac.2013.11.014

5. Su, G.-W., M.-Y. Cheng, and W.-C. Chi, "Current loop controller design for torque ripple suppression of switched reluctance motors," 2013 CACS International Automatic Control Conference (CACS), 496-500, IEEE, 2013.
doi:10.1109/CACS.2013.6734185

6. Nakazawa, Y., K. Ohyama, H. Fujii, H. Uehara, and Y. Hyakutake, "Improvement of efficiency of switched reluctance motor by single pulse control based on linear torque equation," 15th European Conference on Power Electronics and Applications (EPE), 1-10, IEEE, 2013.
doi:10.1109/EPE.2013.6634418

7. Singh, S. K. and R. K. Tripathi, "Minimization of torque ripples in SRM drive using DITC for electrical vehicle application," 2013 Students Conference on Engineering and Systems (SCES), 1-5, IEEE, 2013.

8. Kalaivani, L., P. Subburaj, and M. W. Iruthayarajan, "Speed control of switched reluctance motor with torque ripple reduction using non-dominated sorting genetic algorithm (NSGA-II)," International Journal of Electrical Power & Energy Systems, Vol. 53, 69-77, 2013.
doi:10.1016/j.ijepes.2013.04.005

9. Mikail, R., I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, "Torque-ripple minimization of switched reluctance machines through current profiling," IEEE Transactions on Industry Applications, Vol. 49, No. 3, 1258-1267, 2013.
doi:10.1109/TIA.2013.2252592

10. Dowlatshahi, M., S. M. Saghaeian Nejad, and J. Ahn, "Torque ripple minimization of switched reluctance motor using modified torque sharing function," 2013 21st Iranian Conference on Electrical Engineering (ICEE), 1-6, IEEE, 2013.
doi:10.1109/IranianCEE.2013.6599580

11. Ma, C., L. Qu, and Z. Tang, "Torque ripple reduction for mutually coupled switched reluctance motor by bipolar excitations," 2013 IEEE International Electric Machines & Drives Conference (IEMDC), 1211-1217, IEEE, 2013.
doi:10.1109/IEMDC.2013.6556287

12. Somesan, L.-E., E. Padurariu, and I.-A. Viorel, "Two simple analytical models, direct and inverse, for switched reluctance motors," Progress In Electromagnetics Research M, Vol. 29, 279-291, 2013.
doi:10.2528/PIERM12103001

13. Bist, V. and B. Singh, "A brushless DC motor drive with power factor correction using isolated zeta converter," IEEE Transactions on Industrial Informatics, Vol. 10, No. 4, 2064-2072, 2014.
doi:10.1109/TII.2014.2346689

14. Jin, Y., "Advanced control methods for torque ripple reduction and performance improvement in switched reluctance motor drives,", PhD diss., 2014.
doi:10.1109/TII.2014.2346689

15. Youssef, M. Z., "Design and performance of a cost-effective BLDC drive for water pump application," IEEE Transactions on Industrial Electronics, Vol. 62, No. 5, 3277-3284, 2015.
doi:10.1109/TIE.2014.2350461

16. Parackal, R. and R. A. Koshy, "PV powered zeta converter fed BLDC drive," 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), 1-5, IEEE, 2014.
doi:10.1109/AICERA.2014.6908200

17. Abraham, A. and A. Mathew, "Implementation of a novel PFC Cuk rectifier fed brushless DC motor drive," 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/iCMMD), 1-5, IEEE, 2014.

18. Navardi, M. J., B. Babaghorbani, and A. Ketabi, "Efficiency improvement and torque ripple minimization of switched reluctance motor using FEM and seeker optimization algorithm," Energy Conversion and Management, Vol. 78, 237-244, 2014.
doi:10.1016/j.enconman.2013.11.001

19. Xia, C., Y. Xiao, W. Chen, and T. Shi, "Torque ripple reduction in brushless DC drives based on reference current optimization using integral variable structure control," IEEE Transactions on Industrial Electronics, Vol. 61, No. 2, 738-752, 2014.
doi:10.1109/TIE.2013.2254093

20. Dowlatshahi, M., S. M. Saghaian Nejad, M. Moallem, and J. Ahn, "Torque ripple reduction of switched reluctance motors considering copper loss minimization," 2014 IEEE International Conference on Industrial Technology (ICIT), 858-865, IEEE, 2014.
doi:10.1109/ICIT.2014.6895012

21. Buja, G., M. Bertoluzzo, and R. K. Keshri, "Torque ripple-free operation of PM BLDC drives with petal-wave current supply," IEEE Transactions on Industrial Electronics, Vol. 62, No. 7, 4034-4043, 2015.
doi:10.1109/TIE.2014.2385034

22. Gao, X., X. Wang, Z. Li, and Y. Zhou, "A review of torque ripple control strategies of switched reluctance motor," International Journal of Control & Automation, Vol. 8, No. 4, 103-116, 2015.
doi:10.14257/ijca.2015.8.4.13

23. Balaji, M. and V. Kamaraj, "Evolutionary computation based multi-objective pole shape optimization of switched reluctance machine," International Journal of Electrical Power & Energy Systems, Vol. 43, No. 1, 63-69, 2012.
doi:10.1016/j.ijepes.2012.05.011

24. Tavakkoli, M. A. and M. Moallem, "Torque ripple mitigation of double stator switched reluctance motor (DSSRM) using a novel rotor shape optimization," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 848-852, IEEE, 2012.
doi:10.1109/ECCE.2012.6342730

25. Ren, Z., D. Zhang, and C. S. Koh, "Multi-objective worst-case scenario robust optimal design of switched reluctance motor incorporated with FEM and Kriging," 2013 International Conference on Electrical Machines and Systems (ICEMS), 716-719, IEEE, 2013.

26. Chiariello, A. G., A. Formisano, R. Martone, and F. Pizzo, "Gradient-based worst case search algorithm for robust optimization," IEEE Transactions on Magnetics, Vol. 51, No. 3, 7205004, 2015.

27. Hong, W. C., "Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model," Energy Conversion and Management, Vol. 50, No. 1, 105-117, 2009.
doi:10.1016/j.enconman.2008.08.031

28. Xiao, S., Y. Li, M. Rotaru, and J. K. Sykulski, "Six sigma quality approach to robust optimization," IEEE Transactions on Magnetics, Vol. 51, No. 3, 7201304, 2014.

29. Mirjalili, S., A. Lewis, and S. Mostaghim, "Confidence measure: A novel metric for robust metaheuristic optimisation algorithms," Information Sciences, Vol. 317, 114-142, 2015.
doi:10.1016/j.ins.2015.04.010

30. Lei, G., T. Wang, J. Zhu, Y. Guo, and S. Wang, "System level design optimization method for electrical drive systems - Robust approach," IEEE Transactions on Industrial Electronics, Vol. 62, No. 8, 4702-4713, 2015.
doi:10.1109/TIE.2015.2404305

31. Malarvizhi, K. and M. Kumar, "Particle swarm optimization tuned BELBIC controller for 8/6 SRM operation," 2015 2nd International Conference on Electronics and Communication Systems (ICECS), 904-909, IEEE, 2015.
doi:10.1109/ECS.2015.7125045

32. Angeline, P. J., "Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences," Evolutionary Programming VII, 601-610, Springer, Berlin, Heidelberg, 1998.

33. Li, M., R. Silva, F. Guimarães, and D. Lowther, "A new robust dominance criterion for multiobjective optimization," IEEE Transactions on Magnetics, Vol. 51, No. 3, 8201504, 2015.

34. Mirjalili, S. and A. Lewis, "Novel performance metrics for robust multi-objective optimization algorithms," Swarm and Evolutionary Computation, Vol. 21, 1-23, 2015.
doi:10.1016/j.swevo.2014.10.005