Vol. 46
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-01-27
Modeling of Wave Propagation in General Dispersive Materials with Efficient ADE -WLP-FDTD Method
By
Progress In Electromagnetics Research M, Vol. 46, 81-88, 2016
Abstract
Within the framework of the finite-difference time-domain (FDTD) and the weighted Laguerre polynomials (WLPs), we derive an effective update equation of the electromagnetic in the dispersive media by introducing the factorization-splitting (FS) schemes and auxiliary differential equation (ADE). As two examples, we employ a 2-D parallel plate waveguide loaded with two dispersive medium columns and a thin grapheme sheet to calculate the plane wave propagation by using the FS-ADE-WLP-FDTD method. Compared with the ADE-FDTD and the ADE-WLP-FDTD methods, the results from our proposed method show its accuracy and efficiency for dispersive media simulation.
Citation
Jun Quan, and Wei-Jun Chen, "Modeling of Wave Propagation in General Dispersive Materials with Efficient ADE -WLP-FDTD Method," Progress In Electromagnetics Research M, Vol. 46, 81-88, 2016.
doi:10.2528/PIERM15111905
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd Ed., Artech House, 2005.

2. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 7, No. 10, 2003-2007, Oct. 1999.

3. Kantartzis, N. V., T. T. Zygiridis, and T. D. Tsiboukis, "An unconditionally stable higher order ADI-FDTD technique for the dispersionless analysis of generalized 3-D EMC structures," IEEE Trans. Magn., Vol. 40, No. 3, 1436-1439, Mar. 2004.
doi:10.1109/TMAG.2004.825289

4. Kantartzis, N. V., D. L. Sounas, C. S. Antonopoulos, and T. D. Tsiboukis, "A wideband ADI-FDTD algorithm for the design of double negative metamaterial-based waveguides and antenna substrates," IEEE Trans. Magn., Vol. 43, No. 4, 1329-1332, Apr. 2007.
doi:10.1109/TMAG.2006.891007

5. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381

6. Rana, M. and A. Mohan, "Segmented-LOD-FDTD for electromagnetic propagation inside large complex tunnels," IEEE Trans. Magn., Vol. 48, No. 2, 223-226, Feb. 2012.
doi:10.1109/TMAG.2011.2177075

7. Kantartzis, N. V., T. Ohtani, and Y. Kanai, "Accuracy-adjustable nonstandard LOD-FDTD schemes for the design of carbon nanotube interconnects and nanocomposite EMC shields," IEEE Trans. Magn., Vol. 49, No. 5, 1821-1824, May 2013.
doi:10.1109/TMAG.2013.2238519

8. Chung, Y. S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 697-704, Mar. 2003.
doi:10.1109/TMTT.2003.808732

9. Chen, W.-J., W. Shao, and B.-Z. Wang, "ADE-Laguerre-FDTD method for wave propagation in general dispersive materials," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 5, 228-230, May 2013.
doi:10.1109/LMWC.2013.2253310

10. Chen, Z., Y. T. Duan, Y. R. Zhang, and Y. Yi, "A new efficient algorithm for the unconditionally stable 2-D WLP-FDTD method," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3712-3720, Jul. 2013.
doi:10.1109/TAP.2013.2255093

11. Gandhi, O. P., B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 4, 703-708, Apr. 2007.
doi:10.1109/TMTT.2007.892808

12. Ha, M. and M. Swaminathan, "A Laguerre-FDTD formulation for frequency-dependent dispersive materials," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 5, 225-227, May 2011.
doi:10.1109/LMWC.2011.2119296

13. Hanson, G. W., "Dyadic Greens functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, No. 6, 064302, Mar. 2008.
doi:10.1063/1.2891452