Vol. 47
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-30
In-Situ Monitoring Method for Direction Finding Antennas
By
Progress In Electromagnetics Research M, Vol. 47, 99-110, 2016
Abstract
Antenna arrays for direction finding (DF) are usually designed and tested in controlled environments such as anechoic chambers. However, antenna pattern may change significantly when antennas are placed in their operational environment. In such perturbing close context, the antennas calibration validity becomes a major issue which can lead to DF performance degradation and costly recalibration process. This paper presents an innovative design and implementation of a non-disturbing solution for quasi-real time antenna monitoring. The proposed system is based on optically modulated scattering (OMS) technique. Its capacity to detect the presence of various types of obstacles, which perturb significantly the antenna radiation pattern, is evaluated. A relation between monitoring mode and DF mode measurement signals is established. Finally, a design and sizing of the overall system is proposed.
Citation
Lama Ghattas, Serge Bories, Dominique Picard, Philippe Pouliguen, and Patrick Potier, "In-Situ Monitoring Method for Direction Finding Antennas," Progress In Electromagnetics Research M, Vol. 47, 99-110, 2016.
doi:10.2528/PIERM15111704
References

1. Tunker, T. and B. Friedlander, Classical and Modern Direction-of-Arrival Estimation, Academic Press, 2009.

2. Bellion, A., et al. "Calibration of direction finding antennas in complex environment," Colloque URSI, Chicago, USA, 2008.

3. Gupta, I. J., et al. "An experimental study of antenna array calibration," IEEE Trans. Ant. and Propag., Vol. 51, No. 3, 664-667, 2003.
doi:10.1109/TAP.2003.809870

4. Infante, L., S. D. Quintili, and C. Romanucci, "A real-time diagnostic tool for phased array antenna systems," IEEE International Symposium on Phased Array Systems & Technology, 725-730, 2013.
doi:10.1109/ARRAY.2013.6731920

5. Zarbouti, D., et al. "The effective radiation pattern concept for realistic performance estimation of LTE wireless systems," International Journal of Ant. and Propag., 2013.

6. Bolomey, J. C. and F. E. Gardiol, Engineering Applications of the Modulated Scatterer Technique, Artech House, 2001.

7. Cullen, A. L. and J. C. Parr, "A new perturbation method for measuring microwave fields in free space," Proceedings of the IEE - Part B: Radio and Electronic Engineering, Vol. 102, No. 6, 836-844, 1955.
doi:10.1049/pi-b-1.1955.0168

8. Lao, R. R., et al. "Optically modulated scatterer technique for radiation pattern measurement of small antennas and RFID tags," Antennas and Wireless Propagation Letters, Vol. 8, 76-79, 2009.

9. Pursula, P., et al. "Antenna effective aperture measurement with backscattering modulation," IEEE Trans. Ant. and Propag., Vol. 55, No. 10, 2836-2843, 2007.
doi:10.1109/TAP.2007.905821

10. Liang, W., et al. "The use of an optically modulated scatterer to measure the performance of microwave electromagnetic wave absorber," 2002 3rd International Symposium on Electromagnetic Compatibility, 404-407, 2002.
doi:10.1109/ELMAGC.2002.1177456

11. Choi, J. H., B. Y. Park, and S. O. Park, "Source location estimation using phaseless measurements with the modulated scattering technique for indoor wireless environments," Progress In Electromagnetics Research C, Vol. 14, 197-212, 2010.
doi:10.2528/PIERC10060301

12. Ostadrahimi, M., et al. "Enhancement of near- eld probing in a microwave tomography system," Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.

13. Memarzadeh-Tehran, H., J. Laurin, and R. Kashyap, "Optically modulated probe for precision near-field measurements," IEEE Trans. Inst. and Meas., Vol. 59, No. 10, 2755-2762, 2010.
doi:10.1109/TIM.2010.2045552

14. Ghattas, L., et al. "Benefit of a monitoring system in-situ for direction finding antennas," 35th AMTA, 2013.

15. Fikioris, G. and C. A. Valagiannopoulos, "Input admittances arising from explicit solutions to integral equations for infinite-length dipole antennas," Progress In Electromagnetics Research, Vol. 55, 285-306, 2005.
doi:10.2528/PIER05031701

16. Fikioris, G. and T. T. Wu, "On the application of numerical methods to Hallen's equation," IEEE Trans. Ant. and Propag., Vol. 49, No. 3, 383-392, 2001.
doi:10.1109/8.918612

17. Bellion, A., et al. "Application de la borne de Cramer Rao dans le cas des systmes antennaires complexes de goniomtrie," Colloque GRETSI, 1053-1056, 2007.

18. http://www.enablence.com/media/mediamanager/pdf/32-enablence-datasheet-ocsd-pd-pin1310-1550-pdcs30t-18ghz-ingaas.pdf.

19. Ghattas, L., et al. "Broadband optically modulated scatterer probe for near field measurements," 35th AMTA, 2013.

20. Pursula, P., et al. "Backscattering-based measurement of reactive antenna input impedance," IEEE Trans. Ant. and Propag., Vol. 56, No. 2, 469-474, 2008.
doi:10.1109/TAP.2007.915425

21. Bories, S., "Small antennas impedance and gain characterization using backscattering measurements," Proceedings of EuCAP, 1-5, 2010.

22. Yaghjian, A. D., "An overview of near-field antenna measurements," IEEE Trans. Ant. and Propag., Vol. 34, No. 1, 30-45, 1986.
doi:10.1109/TAP.1986.1143727