Vol. 45
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-18
Fast Algorithm of Wideband Electromagnetic Scattering of Homogeneous Dielectric Targets
By
Progress In Electromagnetics Research M, Vol. 45, 83-90, 2016
Abstract
The PMCHWT-IE-FFT-BURA is applied to the wideband analysis of electromagnetic scattering property of homogeneous targets. Over the broad frequency band, the fast computation is achieved by the Maehly expansion on the basis of the Chebyshev approximation of the electric and magnetic currents. On the Chebyshev sampling points, PMCHWT-IE-FFT greatly reduces the memory requirement by sparsely storing the impedance matrix and decreases the computational time to the greatest degree by block acceleration of the matrix-vector product. Finally, numerical results show that the proposed method can make efficient analysis of wideband property of homogeneous targets without sacrificing accuracy much.
Citation
Bo Zhao, Shu-Xi Gong, Xing Wang, and Yu Zhang, "Fast Algorithm of Wideband Electromagnetic Scattering of Homogeneous Dielectric Targets," Progress In Electromagnetics Research M, Vol. 45, 83-90, 2016.
doi:10.2528/PIERM15111201
References

1. Umashankar, K., A. Taflove, and S. M. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas Propag., Vol. 34, No. 6, 758-766, Jun. 1986.
doi:10.1109/TAP.1986.1143894

2. Zhang, Y., Z.-C. Lin, X.-W. Zhao, and T. K. Sarkar, "Performance of a massively parallel higher-order method of moments code using thousands of CPUs and its applications," IEEE Trans. Antennas Propag., Vol. 62, No. 12, 6317-6324, Dec. 2014.
doi:10.1109/TAP.2014.2361135

3. Song, J. M., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

4. Man, M.-Y., Z.-Y. Lei, Y.-J. Xie, and Y.-Y. Wang, "Analysis of the electrical large scattering problem using the pre-corrected multilevel fast multipole algorithm," Journal of Xidian University, Vol. 39, No. 2, 133-137, 2012.

5. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, Sep.-Oct. 1996.
doi:10.1029/96RS02504

6. Wang, X., S.-X. Gong, J. Ling, and X.-M. Wang, "Interpolation scheme based on adaptive integral method for solving electrically large radiation problem by surface/surface configuration," Progress In Electromagnetics Research M, Vol. 11, 203-211, 2010.

7. Seo, S. M. and J. F. Lee, "A fast IE-FFT algorithm for solving PEC scattering problems," IEEE Trans. Magn., Vol. 41, No. 5, 1476-1479, May 2005.
doi:10.1109/TMAG.2005.844564

8. An, X. and Z.-Q. Lü, "Application of IE-FFT with combined field integral equation to electrically large scattering problems," Microw. Opt. Technol. Lett., Vol. 50, No. 10, 2561-2566, Oct. 2008.
doi:10.1002/mop.23708

9. Ma, J., S.-X. Gong, X. Wang, Y.-X. Xu, W.-J. Zhao, and J. Ling, "Efficient IE-FFT and PO hybrid analysis of antennas around electrically large platforms," IEEE Antennas Wireless Propag. Lett., Vol. 10, 611-614, 2011.

10. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

11. Wan, J. X. and C.-H. Liang, "Rapid solutions of scattering from microstrip antennas using well-conditioned asymptotic waveform evaluation," Progress In Electromagnetics Research, Vol. 49, 39-52, 2004.
doi:10.2528/PIER04021202

12. Ma, J., S.-X. Gong, X. Wang, Y. Liu, and Y.-X. Xu, "Efficient wide-band analysis of antennas around a conducting platform using MOM-PO hybrid method and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6048-6052, Dec. 2012.
doi:10.1109/TAP.2012.2210272

13. Wang, X.-D. and D. H. Werner, "Improved model-based parameter estimation approach for accelerated periodic method of moments solutions with application to analysis of convoluted frequency selected surfaces and metamaterials," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 122-131, Jan. 2010.
doi:10.1109/TAP.2009.2036196

14. Ling, J., S.-X. Gong, B. Lu, X. Wang, and W.-T. Wang, "Fast and accurate radar cross section computation using Chebyshev approximation in both broad frequency band and angular domains simultaneously," Progress In Electromagnetics Research Letters, Vol. 13, 121-129, 2010.
doi:10.2528/PIERL10011208

15. Ma, J., S.-X. Gong, X. Wang, P.-F. Zhang, and Z.-L. Lv, "Frequency sweep technology using Maehly approximation based on MOM-PO hybrid method," Chinese Journal of Radio Science, Vol. 28, No. 1, 45-49, 2013.

16. Dong, H.-L., S.-X. Gong, P.-F. Zhang, J. Ma, and B. Zhao, "Fast and accurate analysis of broadband RCS using method of moments with loop-tree basis functions," IET Microw. Antennas & Propag., Vol. 9, No. 8, 775-780, 2015.