1. Doran, C. and A. Lasenby, Geometric Algebra for Physicists, 2nd Ed., Cambridge University Press, 2003.
doi:10.1017/CBO9780511807497
2. Klimek, M., U. Roemer, S. Schoeps, and T. Weiland, "Space-time discretization of Maxwell’s equations in the setting of geometric algebra," IEEE Proceedings of 2013 URSI International Symposium on Electromagnetic Theory (EMTS), 1101-1104, 2013.
3. Tonti, E., "Finite formulation of the electromagnetic field," Progress In Electromagnetics Research, Vol. 32, 1-44, 2001.
doi:10.2528/PIER00080101
4. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modelling, Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8
5. Sobczyk, G., "Simplicial calculus with geometric algebra," Clifford Algebras and Their Applications in Mathematical Physics, 279-292, Springer, 2011.
6. Hestenes, D., "Differential forms in geometric calculus," Clifford Algebras and their Applications in Mathematical Physics, 269-285, Springer, 1993.
doi:10.1007/978-94-011-2006-7_31
7. Mullen, P., P. Memari, F. de Goes, and M. Desbrun, "HOT: Hodge-optimized triangulations," ACM Trans. Graph, Vol. 30, 103:1-103:12, 2011.
doi:10.1145/2010324.1964998
8. Bellver-Cebreros, C. and M. Rodriguez-Danta, "An alternative model for wave propagation in anisotropic impedance-matched metamaterials," Progress In Electromagnetics Research, Vol. 141, 149-160, 2013.
doi:10.2528/PIER13060510
9. Lindell, I. V., "Electromagnetic wave equation in differential-form representation," Progress In Electromagnetics Research, Vol. 54, 321-333, 2005.
doi:10.2528/PIER05021002
10. Stern, A., Y. Tong, M. Desbrun, and J. E. Marsden, "Geometric computational electrodynamics with variational integrators and discrete differential forms," Geometry, Mechanics, and Dynamics, Vol. 73, 437-475, Springer, 2015.