Vol. 45
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-04
EM Fields Inside a Rotating Circular Hollow Dielectric Cylinder: Numerical Simulation in 2Ds
By
Progress In Electromagnetics Research M, Vol. 45, 1-8, 2016
Abstract
The electromagnetic (EM) fields inside a rotating circular hollow dielectric cylinder were numerically calculated in two dimensions, and the numerical results were presented in this paper. The simulation was carried out by using the method of characteristics (MOC) for the solutions of the time-domain Maxwell equations with the application of the passing center swing back grids (PCSBG) technique in the modified O-type grid system. To illustrate the effects of the rotating hollow dielectric cylinder on the EM fields inside the cylinder, the cylinder may be set to rotate at impractically, extremely high angular frequencies. The use of PCSBG is to overcome the difficulty of the deformed grid cells resulting from the rotating object while the modified O-type grid system satisfies the requirement of minimum number of grid within the shortest wavelength of interest in the larger radius regions where the regular O-type grid fails. A Gaussian EM pulse is utilized as excitation source and set to illuminate the hollow cylinder which is made of either non-magnetic or impedance matching materials. For clear examinations the numerical results of EM fields at and around the cylinder center are exhibited. Several electric field distributions are also shown.
Citation
Mingtsu Ho, Li-An Tsai, and Cheng-Jr Tsai, "EM Fields Inside a Rotating Circular Hollow Dielectric Cylinder: Numerical Simulation in 2Ds ," Progress In Electromagnetics Research M, Vol. 45, 1-8, 2016.
doi:10.2528/PIERM15102301
References

1. Harrison, C. W., "Transient electromagnetic field propagation through infinite sheets, into spherical shells, and into hollow cylinders," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 3, 319-334, 1964.
doi:10.1109/TAP.1964.1138205

2. Wieting, T. J., T. D. Andreadis, J. M. Kidd, W. Quade, A. I. Namenson, L. F. Libello, C. D. Schleisiger, and C. M. Butler, "Electromagnetic field investigations inside a hollow cylinder," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 14, No. 4, 223-227, 1995.
doi:10.1108/eb051946

3. Datta, A. K. and S. C. Som, "Numerical study of scattered electromagnetic field inside a hollow dielectric cylinder. 2: Scattering of two phasematched beams," Applied Optics, Vol. 14, No. 7, 1524-7, 1975.
doi:10.1364/AO.14.001524

4. Rice, S. O., "Reflection of electromagnetic waves from slightly rough surface," Commn. Pure Appl. Math., Vol. 4, 351-378, 1951.
doi:10.1002/cpa.3160040206

5. Beckman, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Pergamon, 1963.

6. Baeva, T., S. Gordienko, and A. Pukhov, "Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma," Physical Review E, Vol. 74, 046404, 2006.
doi:10.1103/PhysRevE.74.046404

7. Kleinman, R. E. and R. B. Mack, "Scattering by linearly vibrating objects," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 3, 344-352, May 1979.
doi:10.1109/TAP.1979.1142085

8. Cooper, J., "Scattering of electromagnetic fields by a moving boundary: The one-dimensional case," IEEE Transactions on Antennas and Propagation, Vol. 28, No. 6, 791-795, November 1980.
doi:10.1109/TAP.1980.1142445

9. Harfoush, F., A. Taflove, and G. Kriegsmann, "A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions," IEEE Trans. Antennas Propagation, Vol. 37, No. 1, 55-63, January 1989.
doi:10.1109/8.192164

10. Cooper, J., "Longtime behavior and energy growth for electromagnetic waves reflected by a moving boundary," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 10, 1365-1370, October 1993.
doi:10.1109/8.247776

11. Donohoe, J. P., J. H. Beggs, and M. Ho, "Comparison of finite-difference time-domain results for scattered EM fields: Yee algorithm vs. a characteristic based algorithm," 27th IEEE Southeastern Symposium on System Theory, March 1995.

12. Ho, M., "Scattering of EM waves from traveling and/or vibrating perfect surface: Numerical simulation," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 152-156, January 2006.
doi:10.1109/TAP.2005.861552

13. Ho, M., "EM scattering from PEC plane moving at extremely high speed: Simulation in one dimension," Journal of Applied Science and Engineering (JASE), Vol. 17, No. 4, 429-436, December 2014.

14. Ho, M. and F.-S. Lai, "Effects of medium conductivity on electromagnetic pulse propagation onto dielectric half space: One-dimensional simulation using characteristic-based method," Journal of ElectroMagnetic Waves and Applications, Vol. 21, No. 13, 1773-1785, 2007.

15. Ho, M., F.-S. Lai, S.-W. Tan, and P.-W. Chen, "Numerical simulation of propagation of EM pulse through lossless non-uniform dielectric slab using characteristic-based method," Progress In Electromagnetic Research, Vol. 81, 197-212, January 2008.
doi:10.2528/PIER08010303

16. Ho, M., "Numerically solving scattered electromagnetic fields from rotating objects using passing center swing back grid technique: A proposal," Journal of ElectroMagnetic Waves and Applications, Vol. 23, No. 23, 389-394, January 2009.
doi:10.1163/156939309787604526

17. Ho, M., "Simulation of scattered fields from rotating cylinder in 2D: Under illumination of TE and TM gaussian pulses," PIERS Proceedings, 1646-1651, Moscow, Russia, August 18-21, 2009.

18. Ho, M., "Simulation of scattered EM fields from rotating cylinder using passing center swing back grids technique in two dimensions," Progress In Electromagnetic Research, Vol. 92, 79-90, April 2009.