Vol. 57
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-11-17
Waveguide Integrated High-Gain Amplifier Module for Millimeter-Wave Applications
By
Progress In Electromagnetics Research Letters, Vol. 57, 125-130, 2015
Abstract
In this paper, a high-gain amplifier module has been presented for millimeter wave applications. In order to suppress oscillation of the high-gain amplification block, a rectangular waveguide (WG) is fully integrated into the metal case, on which a cascaded two-stage amplifier is mounted. Due to the integrated WG, additional WG-to-microstrip line (MSL) transitions are required. Therefore, a low-loss and wide-band WG-to-MSL transition is designed and fabricated on a 5 mil thick RT5880 substrate. Two sets of WG-to-MSL transitions in back-to-back structure are assembled in the metal case for the high-gain amplifier module and are characterized. The measured transition loss and operational returnloss (S11) bandwidth less than -10 dB are less than -0.44 dB/a transition and 15.9 GHz from 34.1 to 50 GHz, respectively. The fabricated high-gain amplifier module shows a high gain over 39.7 dB from 38 to 41 GHz. At 38.7 GHz, its maximum gain of 44.25 dB is achieved.
Citation
Young Chul Lee, "Waveguide Integrated High-Gain Amplifier Module for Millimeter-Wave Applications," Progress In Electromagnetics Research Letters, Vol. 57, 125-130, 2015.
doi:10.2528/PIERL15101102
References

1. Tessmann, A., S. Kudszus, T. Feltgen, M. Riessle, C. Sklarczyk, and W. H. Haydl, "A 94 GHz single-chip FMCW radar module for commercial sensor applications," IEEE MTT-S International Microwave Symposium, Vol. 3, 1851-1854, 2002.

2. Tessmann, A., A. Leuther, M. Kuri, H. Massler, M. Riessle, H. Essen, H. Stanko, R. Sommer, M. Zink, R. Stibal, W. Reinert, and M. Schlechtweg, "220 GHz low-noise amplifier modules for radiometric imaging applications," The 1st European Microwave Integrated Circuits Conference, 137-140, 2006.
doi:10.1109/EMICC.2006.282770

3. Kim, J.-G., D.-W. Kang, B.-W. Min, and G. M. Rebeiz, "A single-chip 36-38 GHz 4-element transmit/receive phased-array with 5-bit amplitude and phase control," IEEE MTT-S International Microwave Symposium, 561-564, 2009.

4. Yaakob, S., N. M. Samsuri, R. Mohamad, N. E. Farid, I. M. Azmi, S. M. M. Hassan, N. Khushairi, S. A. E. A. Rahim, A. I. A. Rahim, A. Rasmi, A. K. Zamzuri, S. M. Idrus, and S. Fan, "Live HD video transmission using 40 GHz radio over fibre downlink system," IEEE 3rd International Conference on Photonics (ICP), 246-249, 2012.

5. Rangan, S., T. S. Rappaport, and E. Erkip, "Millimeter wave cellular wireless networks: Potentials and challenges," Proceedings of the IEEE, Vol. 102, 366-385, 2014.
doi:10.1109/JPROC.2014.2299397

6. Tessmann, A., M. Riessle, S. Kudszus, and H. Massler, "A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects," IEEE Microwave and Wireless Components Letters, Vol. 14, 145-147, 2004.
doi:10.1109/LMWC.2004.827115

7. Dhar, J., R. K. Arora, A. Dasgupta, and S. S. Rana, "Enclosure effect on microwave power amplifier," Progress In Electromagnetics Research C, Vol. 19, 163-177, 2011.
doi:10.2528/PIERC10112604

8. Krems, T., A. Tessmann, W. H. Haydl, C. Schmelz, and P. Heide, "Avoiding cross talk and feedback effects in packaging coplanar millimeter-wave circuits," IEEE MTT-S International Microwave Symposium, Vol. 2, 1091-1094, 1998.

9. Beilenhoff, K. and W. Heinrich, "Excitation of the parasitic parallel-plate line mode at coplanar discontinuities," IEEE MTT-S International Microwave Symposium, Vol. 3, 1789-1792, 1997.

10. Yook, J.-G., L. P. B. Katehi, R. N. Simons, and K. A. Shalkhauser, "Experimental and theoretical study of parasitic leakage/resonance in a K/Ka-band MMIC package," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, 2,403-2,410, 1996.
doi:10.1109/22.554569

11. Lee, Y. C., W.-I. Chang, and C. S. Park, "Monolithic LTCC SiP transmitter for 60 GHz wireless communication terminals," IEEE MTT-S International Microwave Symposium, 1015-1018, 2005.

12. Radisic, V., X. Mei, S. Sarkozy, W. Yoshida, P.-H. Liu, J. Uyeda, R. Lai, and W. R. Deal, "A 50 mW 220 GHz power amplifier module," IEEE MTT-S International Microwave Symposium, 45-48, 2010.

13. Tessmann, A., A. Leuther, V. Hurm, H. Massler, M. Zink, M. Kuri, M. Riessle, R. Losch, M. Schlechtweg, and O. Ambacher, "A 300 GHz mHEMT amplifier module," IEEE International Conference on Indium Phosphide & Related Materials, 196-199, 2009.
doi:10.1109/ICIPRM.2009.5012477

14. Samoska, L., S. Church, K. Cleary, A. Fung, T. C. Gaier, P. Kangaslahti, and P. Voll, "Cryogenic MMIC low noise amplifiers for W-band and beyond," International Symposium on Space Terahertz Technology, Tucson, AZ, 2011.

15. Avago Technologies "AMMP-6441 36-40 GHz, 0.4W power amplifier in SMT package,", [Online]. Available: http://www.datasheetlib.com/datasheet/168419/ammp-6441-tr2g avago-technologies.html.

16. Rogers Corporation [Online], Available: http://www.rogerscorp.com.

17. Leong, Y.-C. and S. Weinreb, "Full band waveguide-to-microstrip probe transitions," IEEE MTT-S International Microwave Symposium, 1435-1438, 1999.

18. Shireen, R., S. Shi, and D. W. Prather, "W-band microstrip-to-waveguide transition using via fences," Progress In Electromagnetics Research Letters, Vol. 16, 151-160, 2010.
doi:10.2528/PIERL10061407

19. CST Microwave Studio [Online], , , Available: https://www.cst.com.

20. Avago Technologies, , Application note 5520-AMxP-XXXX Production Assembly process (Land Pattern A), [Online]. Available: http://www.avagotech.com/docs/AV02-2954EN.