Vol. 45
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-14
Analysis of Step-Loaded Open Rectangular Grating Slow-Wave Structures for mm -Wave Traveling-Wave Tubes
By
Progress In Electromagnetics Research M, Vol. 45, 27-34, 2016
Abstract
The open rectangular grating with step-loaded slow-wave structure (SWS), a type of all-metal SWS for high power wide band mm-wave wave traveling wave tubes (TWT) is presented in this paper. By using the jumping conditions at the interface of two neighboring steps and single-mode approximation (SMA) field matching theory, the dispersion equation and coupling impedance of this SWS were obtained. Then the obtained complex dispersion equation was numerically calculated, and the slow-wave characteristics of the fundamental wave of this structure were discussed. Moreover, the calculation results by our theory were accordant with the simulation data obtained by the 3-D electromagnetic simulation software HFSS, The numerical calculation results show that the dispersion characteristics and coupling impedance are notably improved by loading the steps. And the working bandwidth may be the widest when the thickness of the step is about equal to the thickness of the groove depth. The proper design parameters can be optimized to meet the needs of high frequency characteristics with wide bandwidth and high output power. The present study will be useful for further research and design of this kind of high frequency system.
Citation
Chengfang Fu, Yanyu Wei, Bo Zhao, Yudong Yang, and Yongfeng Ju, "Analysis of Step-Loaded Open Rectangular Grating Slow-Wave Structures for mm -Wave Traveling-Wave Tubes," Progress In Electromagnetics Research M, Vol. 45, 27-34, 2016.
doi:10.2528/PIERM15100801
References

1. Fu, C., H. Zhu, and Y. Wei, "The small signal analysis of a thicker helix traveling-wave tube under the helical coordinate system," High Power Laser and Partical Beams, Vol. 26, No. 3, 033002(6), 2014.

2. Kory, C., L. Ives, J. Booske, et al. "Novel TWT interaction circuits for high frequency application," International Vacuum Electron Conference 2004, 51-52, 2004.

3. Louis, L. J., J. E. Scharer, and J. H. Booske, "Collective single pass gain in a tunable rectangular grating amplifier," Physics of Plasmas, Vol. 5, No. 5, 2797-2805, 1998.
doi:10.1063/1.872967

4. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., 571-580, Wiley-IEEE Press, 2001.
doi:10.1109/9780470544662

5. Maragos, A. A., Z. C. Ioannidis, and I. G. Tigelis, "Dispersion characteristics of a rectangular waveguide grating," IEEE Trans. on Plasma Science, Vol. 31, No. 3, 1075-1082, 2003.
doi:10.1109/TPS.2003.819015

6. Gong, Y.-B., Z.-G. Lu, G.-J. Wang, et al. "Study on mm-wave rectangular grating traveling wave tube with sheet-beam," J. Infrared Millim. Waves, Vol. 25, No. 3, 173-178, 2006.

7. Lu, Z.-G., Y.-Y. Wei, Y.-B. Gong, et al. "Study on step-loaded rectangular waveguide grating slow-wave system," J. Infrared Millim. Waves, Vol. 25, No. 3, 349-354, 2006.

8. Yue, L., W. Wnag, Yu. Gong, et al. "Analysis of coaxial ridged disk-loaded slow-wave structures for relativistic traveling wave tubes," IEEE Trans. on Plasma Science, Vol. 32, No. 3, 1086-1092, 2004.
doi:10.1109/TPS.2004.828784

9. Wang, W. X., G. F. Yu, and Y. Y.Wei, "Study of the ridge-loaded helical groove slow-wave structure," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 8, 1689-1695, 1997.
doi:10.1109/22.641712

10. Ramo, S., J. Whinnery, and T. V. Duzer, Fields and Waves in Communication Electronics, 573-579, Wiley, 1965.

11. Liao, M.-L., Y.-Y. Wei, Y. Huang, et al. "Study on mm band open rectangular waveguide grating," The 17th Annual Seminar Conference on Military Microwave Tube, 272-276, The Chinese Electronic Society, Yichang, 2009.

12. Liu, S.-G., Introduction of Microwave Electronics, 234-246, National Defence Industry Press, 1985.