Vol. 58
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-02-04
Improved NLOS Error Mitigation Based on LTS Algorithm
By
Progress In Electromagnetics Research Letters, Vol. 58, 133-139, 2016
Abstract
A new improved Least Trimmed Squares (LTS) based algorithm for Non-line-of sight (NLOS) error mitigation is proposed for indoor localisation systems. The conventional LTS algorithm has hard threshold to decide the final set of base stations (BSs) to be used in position calculations. When the number of Line of Sight (LOS) base stations is more than the number of NLOS BSs the conventional LTS algorithm does not include some of them in position estimation due to principle of LTS algorithm or under heavy NLOS environments it cannot separate least biased BSs to use. To improve the performance of the conventional LTS algorithm in dynamic environments we have proposed a method that selects BSs for position calculation based on ordered residuals without discarding half of the BSs. By choosing a set of BSs which have least residual errors among all combinations as a final set for position calculation, we were able to decrease the localisation error of the system in dynamic environments. We demonstrate the robustness of the new improved method based on computer simulations under realistic channel environments.
Citation
Jasurbek Khodjaev, Salvatore Tedesco, and Brendan O'Flynn, "Improved NLOS Error Mitigation Based on LTS Algorithm," Progress In Electromagnetics Research Letters, Vol. 58, 133-139, 2016.
doi:10.2528/PIERL15100103
References

1. http://inlocationalliance.org/, 2015.
doi:10.1109/TSMCC.2007.905750

2. Hui, L., H. Darabi, P. Banerjee, and L. Jing, "Survey of wireless indoor positioning techniques and systems," IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, Vol. 37, No. 6, 1067-1080, 2007.

3. Farid, Z., R. Nordin, and M. Ismail, "Recent advances in wireless indoor localization techniques and system," Journal of Computer Networks and Communications, Vol. 2013, Article ID 185138, 12 pages, 2013.
doi:10.1016/j.procs.2014.07.078

4. Kul, G., T. Özyer, and B. Tavli, "IEEE 802.11 WLAN based real time indoor positioning: Literature survey and experimental investigations," Procedia Computer Science, Vol. 34, 157-164, 2014.
doi:10.1109/TWC.2012.081612.120045

5. Luo, Y. and C. L. Law, "Indoor positioning using UWB-IR signals in the presence of dense multipath with path overlapping," IEEE Transactions on wireless communications, Vol. 11, No. 10, 3734-3743, 2012.

6. Sahinoglu, Z., S. Gezici, and I. Güvenc, Ultra-wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols, Cambridge University Press, 2012.

7. Zhang, V. Y., A.-K. S. Wong, T. W. Kam, and R. W. Ouyang, "Hybrid TOA/AOA-based mobile localization with and without tracking in CDMA cellular networks," IEEE Wireless Communications and Networking Conference (WCNC), 2010, 1-6, 2010.
doi:10.1007/s12243-009-0124-z

8. Khodjaev, J., Y. Park, and A. S. Malik, "Survey of NLOS identification and error mitigation problems in UWB-based positioning algorithms for dense environments," Annals of Telecommunications, Vol. 65, No. 5-6, 301-311, 2010.
doi:10.2528/PIER09020301

9. Tayebi, A., J. Gomez, F. M. Saez de Adana, and O. Gutierrez, "The application of ray-tracing to mobile localization using the direction of arrival and received signal strength in multipath indoor environments," Progress In Electromagnetics Research, Vol. 91, 1-15, 2009.
doi:10.2528/PIER12121208

10. Jiang, J.-J., F.-J. Duan, and J. Chen, "Three-dimensional localization algorithm for mixed near-field and far-field sources based on ESPRIT and MUSIC method," Progress In Electromagnetics Research, Vol. 136, 435-456, 2013.
doi:10.2528/PIER09051703

11. Song, H. B., H.-G. Wang, K. Hong, and L. Wang, "A novel source localization scheme based on Unitary ESPRIT and city electronic maps in urban environments," Progress In Electromagnetics Research, Vol. 94, 243-262, 2009.
doi:10.2528/PIERC13101301

12. Ke, W., G. Liu, and T. Fu, "Robust sparsity-based device-free passive localization in wireless networks," Progress In Electromagnetics Research C, Vol. 46, 63-73, 2014.

13. Yuan, Y., Z. Yubin, and M. Kyas, "A statistics-based least squares (SLS) method for non-line-of-sight error of indoor localization," IEEE Wireless Communications and Networking Conference (WCNC), 2299-2304, 2013.

14. Li, Z., W. Trappe, Y. Zhang, and B. Nath, "Robust statistical methods for securing wireless localization in sensor networks," Proceedings of IEEE International Symposium on Information Processing in Sensor Networks, 91-98, 2005.
doi:10.1155/ASP/2006/43429

15. Casas, R., A. Marco, J. J. Guerrero, and J. Falco, "Robust estimator for non-line-of-sight error mitigation in indoor localization," Eurasip Journal of Applied Signal Processing, Vol. 2006, No. 1, 1-8, 2006.

16. Gezici, S., I. Guvenc, and Z. Sahinoglu, "On the performance of linear least-squares estimation in wireless positioning systems," IEEE International Conference on Communications, 4203-4208, 2008.
doi:10.1109/LCOMM.2014.2327952

17. Qiao, T. and H. Liu, "Improved least median of squares localization for non-line-of-sight mitigation," IEEE Communications Letters, Vol. 18, No. 8, 1451-1454, 2014.
doi:10.1007/s12243-011-0279-2

18. Khodjaev, J., S. Hur, and Y. Park, "Low complexity LTS-based NLOS error mitigation for localization," Annals of Telecommunications, Vol. 67, No. 9-10, 471-476, 2012.
doi:10.1109/TVT.2008.926071

19. Alsindi, N., B. Alavi, and K. Pahlavan, "Measurement and modeling of ultrawideband TOA-based ranging in indoor multipath environments," IEEE Transactions on Vehicular Technology, Vol. 58, No. 3, 1046-1058, 2009.