Vol. 45
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-12-31
Polarizability Tensor Calculation Using Induced Charge and Current Distributions
By
Progress In Electromagnetics Research M, Vol. 45, 123-130, 2016
Abstract
We develop a semi-analytical approach to calculate the polarizability tensors of an arbitrary scatterer. The approach is based on numerical integration from induced charges and currents on the scatterer. By taking the advantages of the present approach, we calculate the polarizability tensors of any arbitrary scatterer in a homogeneous isotropic medium. This approach, in comparison to other reported approaches, is simple, easily implemented, and does not require spherical harmonic expansion or complicated far- eld calculations. We examine the validity of the approach using several examples and compare the results with other approaches.
Citation
Mohammad Yazdi, and Nader Komjani, "Polarizability Tensor Calculation Using Induced Charge and Current Distributions," Progress In Electromagnetics Research M, Vol. 45, 123-130, 2016.
doi:10.2528/PIERM15092502
References

1. Serdyukov, A. N., I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electro-magnetics of Bianisotropic Materials: Theory and Applications, Gordon and Breach Science Publishers, 2001.

2. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

3. Tretyakov, S. A., F. Mariotte, C. R. Simovski, T. G. Kharina, and J. P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag., Vol. 44, No. 7, 1006-1014, 1996.
doi:10.1109/8.504309

4. Mirmoosa, M. S., Y. Raadi, V. S. Asadchy C. R. Simovski, and S. A. Tretyakov, "Polarizabilities of nonreciprocal bianisotropic particles," Phys. Rev. Applied., Vol. 1, No. 3, 034005, 2014.
doi:10.1103/PhysRevApplied.1.034005

5. Alaee, R., M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, "Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications," Phys. Rev. B, Vol. 91, 2015.

6. Arango, F. B. and A. F. Koenderink, "Polarizability tensor retrieval for magnetic and plasmonic antenna design," New Journal of Physics, Vol. 15, 2013.

7. Ishimaru, A., S. W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2550-2557, 2003.
doi:10.1109/TAP.2003.817565

8. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, 1991.

9. Simovski, C. R., S. A. Tretyakov, A. A. Sochava, B. Sauviac, F. Mariotte, and T. G. Kharina, "Antenna model for conductive omega particles," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 11, 1509-1530, 1997.
doi:10.1163/156939397X00567

10. Terekhov, Y. E., A. V. Zhuravlev, and G. V. Belokopytov, "The polarizability matrix of split ring resonators," Moscow University Physics Bulletin, Vol. 3, 254-259, 2011.
doi:10.3103/S0027134911030222

11. Bohren, C. F. and D. R. Huffman, Absoption and Scattering of Light by Small Particles, 1st Ed., Wiley, 1983.

12. Asadchy, V. S., I. A. Faniayeu, Y. Radi, and S. A. Tretyakov, "Determining polarizability tensors for an arbitrary small electromagnetic scatterer," Photonics and Nanostructures, Vol. 12, 298-304, 2014.
doi:10.1016/j.photonics.2014.04.004

13. Raab, R. E. and O. L. DeLange, Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, Clarendon Press, 2004.

14. Viitanen, A. J. and I. V. Lindell, "Chiral slab polarization transformer for aperture antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 9, 1395-1397, 1998.
doi:10.1109/8.719989

15. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467

16. Jin, Y. and S. He, "Focusing by a slab of chiral medium," Opt. Express, Vol. 13, No. 13, 4974-4979, 2005.
doi:10.1364/OPEX.13.004974

17. William, B. and T. Kelvin, Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light, C. J. Clay and Sons, 1904.

18. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergmon Press, 1963.

19. Mühlig, S., C. Menzel, C. Rockstuhl, and F. Lederer, "Multipole analysis of meta-atoms," Metamaterials, Vol. 5, 2011.

20. Johnson, P. B. and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370