1. Biberman, A. and K. Bergman, "Optical interconnection networks for high-performance computing systems," Rep. Prog. Phys., Vol. 75, 046402, 2012.
doi:10.1088/0034-4885/75/4/046402
2. Li, Z., A. Qouneh, M. Joshi, W. Zhang, X. Fu, and T. Li, "Aurora: A cross-layer solution for thermally resilient photonic network-on-chip," Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 23, No. 1, 170-183, 2015.
doi:10.1109/TVLSI.2014.2300477
3. Van Campenhout, J., W. M. J. Green, and Y. A. Vlasov, "Design of a digital, ultra-broadband electro-optic switch for recongurable networks-on-chip," Opt. Express, Vol. 12, 23793-23801, 2009.
doi:10.1364/OE.17.023793
4. Calò, G., A. D'Orazio, and V. Petruzzelli, "Broadband Mach-Zehnder switch for photonic networks on chip," J. Lightwave Technol., Vol. 30, No. 7, 944-952, 2012.
doi:10.1109/JLT.2012.2184739
5. Calò, G. and V. Petruzzelli, "WDM performances of two- and three-waveguide Mach-Zehnder switches assembled into 4×4 matrix router," Progress In Electromagnetics Research Letters, Vol. 38, 1-16, 2013.
doi:10.2528/PIERL12113007
6. Padmaraju, K. and K. Bergman, "Resolving the thermal challenges for silicon microring resonator devices," Nanophotonics, Vol. 3, 269-281, 2014.
7. Kondow, M., T. Kitatani, S. Nakatsuka, M. C. Larson, K. Nakahara, Y. Yazawa, M. Okar, and K. Uomi, "GaInNAs: A novel material for long wavelength semiconductor lasers," IEEE J. Sel. Top. Quantum Electron, 719-730, 1997.
doi:10.1109/2944.640627
8. Konttinen, J., P. Tuomisto, M. Guina, and M. Pessa, "Recent progress in development of GaInNAs-based photonic devices," Proc. IEEE ICTON 2006, 189-192, 2006.
9. Dumitrescu, M., A. Larsson, Y. Wei, E. Larkins, P. Uusimaa, K. Schulz, and M. Pessal, "High-performance 1.3 μm dilute-nitride edge-emitting lasers," International Semiconductor Conference, 2007. CAS 2007, Sinaia, Romania, Oct. 15-17, 2007.
10. Dagens, B., A. Martinez, D. Make, O. Le Gouezigou, J. Provost, V. Sallet, K. Merghem, J. Harmand, A. Ramdane, and B. Thedrez, "Floor free 10-Gb/s transmission with directly modulated GaInNAs-GaAs 1.35-μm laser for metropolitan applications," IEEE Photonics Technol. Lett., Vol. 17, No. 5, 971-973, 2005.
doi:10.1109/LPT.2005.845718
11. Gustavsson, J. S., Y. Q. Wei, M. Sadeghi, S. M. Wang, and A. Larsson, "10 Gbit/s modulation of 1.3 μm GaInNAs lasers up to 110°C," Electron. Lett., Vol. 42, No. 16, 925-926, 2006.
doi:10.1049/el:20061517
12. Wei, Y. Q., J. S. Gustavsson, M. Sadeghi, S. M. Wang, A. Larsson, P. Savolainen, P. Melanen, and P. Sipilä, "Uncooled 2.5 Gb/s operation of 1.3 μm GaInNAs DQW lasers over a wide temperature range," Opt. Express, Vol. 14, 2753-2759, 2006.
doi:10.1364/OE.14.002753
13. Kima, C. K. and Y. H. Lee, "Thermal characteristics of optical gain for GaInNAs quantum wells at 1.3 μm," Appl. Phys. Lett., Vol. 79, No. 19, 3038-3040, 2001.
doi:10.1063/1.1418022
14. Alexandropoulos, D., M. J. Adams, Z. Hatzopoulos, and D. Syvridis, "Proposed scheme for polarization insensitive GaInNAs-based semiconductor optical amplifiers," IEEE J. Quantum Electron., Vol. 41, 817-822, 2005.
doi:10.1109/JQE.2005.847551
15. Calò, G., D. Alexandropoulos, A. D'Orazio, and V. Petruzzelli, "Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides," Phys. Status Solidi B-Basic Solid State Phys., Vol. 248, No. 5, 212-215, 2011.
doi:10.1002/pssb.201000782
16. Schires, K., R. Al Seyab, A. Hurtado, V.-M. Korpijarvi, M. Guina, I. D. Henning, and M. J. Adams, "Optically-pumped dilute nitride spin-VCSEL," Opt. Express, Vol. 20, No. 4, 3550-3555, 2012.
doi:10.1364/OE.20.003550
17. Bonnefont, B., M. Messant, O. Boutillier, F. Gauthier-Lafaye, A. Lozes-Dupuy, M. V. Sallet, K. Merghem, L. Ferlazzo, J. C. Harmand, A. Ramdane, J. G. Provost, B. Dagens, J. Landreau, O. Le Gouezigou, and X. Marie, "Optimization and characterization of InGaAsN/GaAs quantum-well ridge laser diodes for high frequency operation," Opt. Quantum Electron., Vol. 38, No. 4-6, 313-324, 2006.
doi:10.1007/s11082-006-0032-7
18. Korpijarvi, V.-M., T. Leinonen, J. Puustinen, Harkonen, and M. D. Guina, "11 W single gain-chip dilute nitride disk laser emitting around 1180 nm," Opt. Express, Vol. 18, No. 25, 25633-25641, 2010.
doi:10.1364/OE.18.025633
19. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton Univ. Press, 2008.
20. Calò, G., A. Farinola, and V. Petruzzelli, "Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution," J. Opt. Soc. Amer. B, Vol. 28, No. 7, 1668-1679, Jul. 2011.
doi:10.1364/JOSAB.28.001668
21. Calò, G. and V. Petruzzelli, "Compact design of photonic crystal ring resonator 2×2 routers as building blocks for photonic networks on chip," J. Opt. Soc. Am. B, Vol. 31, No. 3, 517-525, 2014.
doi:10.1364/JOSAB.31.000517
22. Calò, G. and V. Petruzzelli, "Wavelength routers for optical networks on chip using optimized photonic crystal ring resonators," IEEE Photonics J., Vol. 5, No. 3, 7901011, 2013.
doi:10.1109/JPHOT.2013.2264278
23. Calò, G., A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Tunability of photonic band gap notch filters," IEEE Trans. Nanotechnol., Vol. 7, 273-284, 2008.
doi:10.1109/TNANO.2008.917848
24. Cowan, A. R. and J. F. Young, "Mode Matching for second-harmonic generation in photonic crystal waveguides," Phys. Rev. B, Vol. 65, 085106, 2002.
doi:10.1103/PhysRevB.65.085106
25. Bendickson, J. M., J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in nite, one-dimensional, photonic band-gap structures," Phys. Rev. E, Vol. 53, 4107-4121, 1996.
doi:10.1103/PhysRevE.53.4107
26. Calò, G., V. Petruzzelli, L. Mescia, and F. Prudenzano, "Study of gain in photonic band gap active InP waveguides," J. Opt. Soc. Amer. B, Vol. 26, No. 12, 2414-2422, Dec. 2009.
doi:10.1364/JOSAB.26.002414
27. Calò, G., M. Grande, D. Alexandropoulos, and V. Petruzzelli, "Photonic band gap active waveguide filters based on diluite nitrides," Phys. Status Solidi C, Vol. 10, No. 4, 567-572, 2013.
doi:10.1002/pssc.201200375
28. Calò, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.
doi:10.2528/PIERL12072401
29. Calò, G., D. Alexandropoulos, and V. Petruzzelli, "Active photonic band-gap switch based on GalnNAs multiquantum well," IEEE Photonics J., Vol. 4, No. 5, 1936-1946, 2012.
doi:10.1109/JPHOT.2012.2220128
30. Chang, C. and S. L. Chuang, "Modelling of strained quantum-well lasers with spin-orbit coupling," IEEE. J. Select. Top. Quantum. Electron., Vol. 1, 218-229, 1995.
doi:10.1109/2944.401200
31. Chao, C. Y. and S. L. Chuang, "Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells," Phys. Rev. B, Vol. 46, 4110-4122, 1992.
doi:10.1103/PhysRevB.46.4110
32. Chuang, S. L., "Efficient band-structure calculations of strained quantum wells using a two by two Hamiltonian," Phys. Rev. B, Vol. 43, 9649-9661, 1991.
doi:10.1103/PhysRevB.43.9649
33. Chuang, S. L., Physics of Optolectronic Devices, Wiley Interscience, 1995.
34. Kima, C. K. and Y. H. Lee, "Thermal characteristics of optical gain for GaInNAs quantum wells at 1.3 μm," Appl. Phys. Lett., Vol. 79, No. 19, 3038-3040, 2001.
doi:10.1063/1.1418022
35. Pregla, R., "MOL-BPM method of lines based beam propagation method," Progress In Electromagnetics Research, Vol. 11, 51-102, 1995.
36. Gerdes, J., "Bidirectional eigenmode propagation analysis of optical waveguides based on method of lines," Electron. Lett., Vol. 30, 550-551, 1994.
doi:10.1049/el:19940387
37. D'Orazio, A., M. De Sario, V. Petruzzelli, and F. Prudenzano, "Bidirectional beam propagation method based on the method of lines for the analysis of photonic band gap structures," Opt. Quantum Electron., Vol. 35, 629-640, 2003.
doi:10.1023/A:1023955615239
38. Calò, G., A. D'Orazio, M. Grande, V. Marrocco, and V. Petruzzelli, "Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching," IEEE J. Quantum Electron., Vol. 47, 172-181, 2011.
doi:10.1109/JQE.2010.2053838
39. Buus, J., "The effective index method and its application to semiconductor laser," IEEE J. Quant. Elect., Vol. 18, 1083-1089, 1982.
doi:10.1109/JQE.1982.1071659
40. Makino, T., "Effective index matrix analysis of distributed feedback semiconductor lasers," IEEE J. Quant. Elect., Vol. 28, 434-440, 1982.
41. Working Group I, COST 216 "Comparison of different modeling techniques for longitudinally invariant integrated optical waveguides," IEEE Proceedings, Vol. 136, No. 5, 273-280, Oct. 1989.
42. Batrak, D. V. and S. A. Plisyuk, "Applicability of the effective index method for simulating ridge optical waveguides," Quantum Electron., Vol. 36, 349-352, 2006.
doi:10.1070/QE2006v036n04ABEH013149
43. Alexandropoulos, D., M. J. Adams, Z. Hatzopoulos, and D. Syvridis, "Proposed scheme for polarization insensitive GaInNAs-based semiconductor optical amplifiers," IEEE J. Quantum Electron., Vol. 41, 817-822, 2005.
doi:10.1109/JQE.2005.847551
44. Vurgaftman, I., J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," J. Appl. Phys., Vol. 89, 5815-5875, 2001.
doi:10.1063/1.1368156