1. McCreery, R. L., Raman Spectroscopy for Chemical Analysis, Wiley, 2005.
2. Movasaghi, Z., S. Rehman, and I. U. Rehman, "Raman spectroscopy of biological tissues," Applied Spectroscopy Reviews, Vol. 42, No. 5, 493-541, 2007.
doi:10.1080/05704920701551530
3. Lakowicz, J. R., "Radiative decay engineering: Biophysical and biomedical applications," Analytical Biochemistry, Vol. 298, No. 1, 1-24, 2001.
doi:10.1006/abio.2001.5377
4. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193.003
5. Otto, A., "The `chemical' (electronic) contribution to surface-enhanced Raman scattering," Journal of Raman Spectroscopy, Vol. 36, 497-509, 2005.
doi:10.1002/jrs.1355
6. Gabudean, A. M., M. Focsan, and S. Astilean, "Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS)," The Journal of Physical Chemistry C, Vol. 116, No. 22, 12240-12249, 2012.
doi:10.1021/jp211954m
7. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.
8. Biagioni, P., J. S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics, Vol. 75, No. 2, 024402, 2012.
doi:10.1088/0034-4885/75/2/024402
9. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Physical Review Letters, Vol. 96, No. 11, 113002, 2006.
doi:10.1103/PhysRevLett.96.113002
10. Giannini, V., A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters," Chemical Reviews, Vol. 111, No. 6, 3888-3912, 2011.
doi:10.1021/cr1002672
11. Kinkhabwala, A., Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photonics, Vol. 3, No. 11, 654-657, 2009.
doi:10.1038/nphoton.2009.187
12. Fromm, D. P., A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single ``bowtie'' nanoantennas resonant in the visible," Nano Letters, Vol. 4, No. 5, 957-961, 2004.
doi:10.1021/nl049951r
13. Mohammadi, A., V. Sandoghdar, and M. Agio, "Gold nanorods and nanospheroids for enhancing spontaneous emission," New Journal of Physics, Vol. 10, No. 10, 105015, 2008.
doi:10.1088/1367-2630/10/10/105015
14. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. G. De Abajo, "Optical properties of gold nanorings," Physical Review Letters, Vol. 90, No. 5, 057401, 2003.
doi:10.1103/PhysRevLett.90.057401
15. Rakovich, A., P. Albella, and S. A. Maier, "Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities," ACS Nano, Vol. 9, No. 3, 2648-2658, 2015.
doi:10.1021/nn506433e
16. Urban, A. S., X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, and N. J. Halas, "Three-dimensional plasmonic nanoclusters," Nano Letters, Vol. 13, No. 9, 4399-4403, 2013.
doi:10.1021/nl402231z
17. Volpe, G., G. Volpe, and R. Quidant, "Fractal plasmonics: Subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet," Optics Express, Vol. 19, No. 4, 3612-3618, 2011.
doi:10.1364/OE.19.003612
18. Chen, T. L., D. J. Dikken, J. C. Prangsma, F. Segerink, and J. L. Herek, "Characterization of Sierpinski carpet optical antenna at visible and near-infrared wavelengths," New Journal of Physics, Vol. 16, No. 9, 093024, 2014.
doi:10.1088/1367-2630/16/9/093024
19. Tok, R. U. and K. Sendur, "Plasmonic spiderweb nanoantenna surface for broadband hotspot generation," Optics Letters, Vol. 39, No. 24, 6977-6980, 2014.
doi:10.1364/OL.39.006977
20. Ünlü, E. S., R. U. Tok, and K. Sendur, "Broadband plasmonic nanoantenna with an adjustable spectral response," Optics Express, Vol. 19, No. 2, 1000-1006, 2011.
doi:10.1364/OE.19.001000
21. Boriskina, S. V. and L. Dal Negro, "Multiple-wavelength plasmonic nanoantennas," Optics Letters, Vol. 35, No. 4, 538-540, 2010.
doi:10.1364/OL.35.000538
22. Blanchard, R., S. V. Boriskina, P. Genevet, M. A. Kats, and F. Capasso, "Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point," Optics Express, Vol. 19, No. 22, 22113-22124, 2011.
doi:10.1364/OE.19.022113
23. Pavlov, R. S., A. G. Curto, and N. F. van Hulst, "Log-periodic optical antennas with broadband directivity," Optics Communications, Vol. 285, No. 16, 3334-3340, 2012.
doi:10.1016/j.optcom.2012.04.010
24. Navarro-Cia, M. and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS Nano, Vol. 6, No. 4, 3537-3544, 2012.
doi:10.1021/nn300565x
25. Yang, J., F. Kong, K. Li, and S. Sheng, "Analysis of a log periodic nano-antenna for multi-resonant broadband field enhancement and the Purcell factor," Optics Communications, Vol. 342, 230-237, 2015.
doi:10.1016/j.optcom.2014.12.075
26. Soliman, E. A., "Wideband nanocrescent plasmonic antenna with engineered spectral response," Microwave and Optical Technology Letters, Vol. 55, No. 3, 624-629, 2013.
doi:10.1002/mop.27347
27. Aouani, H., M. Rahmani, H. Sípová, V. Torres, K. Hegnerová, M. Beruete, and S. A. Maier, "Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies," The Journal of Physical Chemistry C, Vol. 117, No. 36, 18620-18626, 2013.
doi:10.1021/jp404535x
28. Smolyaninov, A., L. Pang, L. Freeman, M. Abashin, and Y. Fainman, "Broadband metacoaxial nanoantenna for metasurface and sensing applications," Optics Express, Vol. 22, No. 19, 22786-22793, 2014.
doi:10.1364/OE.22.022786
29. Baffou, G., R. Quidant, and F. J. García de Abajo, "Nanoscale control of optical heating in complex plasmonic systems," ACS Nano, Vol. 4, No. 2, 709-716, 2010.
doi:10.1021/nn901144d
30. http://www.lumerical.com.
31. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/PhysRevB.6.4370
32. Govorov, A. O. and H. H. Richardson, "Generating heat with metal nanoparticles," Nano Today, Vol. 2, No. 1, 30-38, 2007.
doi:10.1016/S1748-0132(07)70017-8
33. Purcell, E. M., "Spontaneous transition probabilities in radio-frequency spectroscopy," Phys. Rev., Vol. 69, 681, 1946.
34. Sun, G., J. B. Khurgin, and R. A. Soref, "Practical enhancement of photoluminescence by metal nanoparticles," Appl. Phys. Lett., Vol. 94, No. 10, 101103, 2009.
doi:10.1063/1.3097025
35. Rogobete, L., F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Optics Letters, Vol. 32, No. 12, 1623-1625, 2007.
doi:10.1364/OL.32.001623
36. Chu, Y., M. G. Banaee, and K. B. Crozier, "Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies," ACS Nano, Vol. 4, No. 5, 2804-2810, 2010.
doi:10.1021/nn901826q
37. Lin, J., Y. Zhang, J. Qian, and S. He, "A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance," Laser Photon. Rev., Vol. 8, No. 4, 610-616, 2014.
doi:10.1002/lpor.201400029
38. Palomba, S., M. Danckwerts, and L. Novotny, "Nonlinear plasmonics with gold nanoparticle antennas," Journal of Optics A: Pure and Applied Optics, Vol. 11, No. 11, 114030, 2009.
doi:10.1088/1464-4258/11/11/114030
39. Noginov, M. A., G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature, Vol. 460, 1110-1112, 2009.
doi:10.1038/nature08318