Vol. 153
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-11-06
Broadband Nanoantennas for Plasmon Enhanced Fluorescence and Raman Spectroscopies
By
Progress In Electromagnetics Research, Vol. 153, 123-131, 2015
Abstract
We propose a novel design of broadband plasmonic nanoantenna that is suitable for fluorescence and Raman enhancement. The structure consists of a gold nanoring and bowties at the center. We numerically investigate the near field and far field performance by employing the finite-difference time-domain method. High Purcell enhancement and large SERS are demonstrated in a record wide spectral bandwidth of 700 nm based on a single emitter-antenna configuration. Moreover, unlike a traditional antenna design, the proposed nanoantenna has low heat generation and high field enhancement at the gap simultaneously, when operating off resonance.
Citation
Zhengdong Yong, Senlin Zhang, Yongjiang Dong, and Sailing He, "Broadband Nanoantennas for Plasmon Enhanced Fluorescence and Raman Spectroscopies," Progress In Electromagnetics Research, Vol. 153, 123-131, 2015.
doi:10.2528/PIER15092402
References

1. McCreery, R. L., Raman Spectroscopy for Chemical Analysis, Wiley, 2005.

2. Movasaghi, Z., S. Rehman, and I. U. Rehman, "Raman spectroscopy of biological tissues," Applied Spectroscopy Reviews, Vol. 42, No. 5, 493-541, 2007.
doi:10.1080/05704920701551530

3. Lakowicz, J. R., "Radiative decay engineering: Biophysical and biomedical applications," Analytical Biochemistry, Vol. 298, No. 1, 1-24, 2001.
doi:10.1006/abio.2001.5377

4. Novotny, L. and B. Hecht, Principles of Nano-optics, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193.003

5. Otto, A., "The `chemical' (electronic) contribution to surface-enhanced Raman scattering," Journal of Raman Spectroscopy, Vol. 36, 497-509, 2005.
doi:10.1002/jrs.1355

6. Gabudean, A. M., M. Focsan, and S. Astilean, "Gold nanorods performing as dual-modal nanoprobes via metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS)," The Journal of Physical Chemistry C, Vol. 116, No. 22, 12240-12249, 2012.
doi:10.1021/jp211954m

7. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.

8. Biagioni, P., J. S. Huang, and B. Hecht, "Nanoantennas for visible and infrared radiation," Reports on Progress in Physics, Vol. 75, No. 2, 024402, 2012.
doi:10.1088/0034-4885/75/2/024402

9. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Physical Review Letters, Vol. 96, No. 11, 113002, 2006.
doi:10.1103/PhysRevLett.96.113002

10. Giannini, V., A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters," Chemical Reviews, Vol. 111, No. 6, 3888-3912, 2011.
doi:10.1021/cr1002672

11. Kinkhabwala, A., Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photonics, Vol. 3, No. 11, 654-657, 2009.
doi:10.1038/nphoton.2009.187

12. Fromm, D. P., A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single ``bowtie'' nanoantennas resonant in the visible," Nano Letters, Vol. 4, No. 5, 957-961, 2004.
doi:10.1021/nl049951r

13. Mohammadi, A., V. Sandoghdar, and M. Agio, "Gold nanorods and nanospheroids for enhancing spontaneous emission," New Journal of Physics, Vol. 10, No. 10, 105015, 2008.
doi:10.1088/1367-2630/10/10/105015

14. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. G. De Abajo, "Optical properties of gold nanorings," Physical Review Letters, Vol. 90, No. 5, 057401, 2003.
doi:10.1103/PhysRevLett.90.057401

15. Rakovich, A., P. Albella, and S. A. Maier, "Plasmonic control of radiative properties of semiconductor quantum dots coupled to plasmonic ring cavities," ACS Nano, Vol. 9, No. 3, 2648-2658, 2015.
doi:10.1021/nn506433e

16. Urban, A. S., X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, and N. J. Halas, "Three-dimensional plasmonic nanoclusters," Nano Letters, Vol. 13, No. 9, 4399-4403, 2013.
doi:10.1021/nl402231z

17. Volpe, G., G. Volpe, and R. Quidant, "Fractal plasmonics: Subdiffraction focusing and broadband spectral response by a Sierpinski nanocarpet," Optics Express, Vol. 19, No. 4, 3612-3618, 2011.
doi:10.1364/OE.19.003612

18. Chen, T. L., D. J. Dikken, J. C. Prangsma, F. Segerink, and J. L. Herek, "Characterization of Sierpinski carpet optical antenna at visible and near-infrared wavelengths," New Journal of Physics, Vol. 16, No. 9, 093024, 2014.
doi:10.1088/1367-2630/16/9/093024

19. Tok, R. U. and K. Sendur, "Plasmonic spiderweb nanoantenna surface for broadband hotspot generation," Optics Letters, Vol. 39, No. 24, 6977-6980, 2014.
doi:10.1364/OL.39.006977

20. Ünlü, E. S., R. U. Tok, and K. Sendur, "Broadband plasmonic nanoantenna with an adjustable spectral response," Optics Express, Vol. 19, No. 2, 1000-1006, 2011.
doi:10.1364/OE.19.001000

21. Boriskina, S. V. and L. Dal Negro, "Multiple-wavelength plasmonic nanoantennas," Optics Letters, Vol. 35, No. 4, 538-540, 2010.
doi:10.1364/OL.35.000538

22. Blanchard, R., S. V. Boriskina, P. Genevet, M. A. Kats, and F. Capasso, "Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point," Optics Express, Vol. 19, No. 22, 22113-22124, 2011.
doi:10.1364/OE.19.022113

23. Pavlov, R. S., A. G. Curto, and N. F. van Hulst, "Log-periodic optical antennas with broadband directivity," Optics Communications, Vol. 285, No. 16, 3334-3340, 2012.
doi:10.1016/j.optcom.2012.04.010

24. Navarro-Cia, M. and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS Nano, Vol. 6, No. 4, 3537-3544, 2012.
doi:10.1021/nn300565x

25. Yang, J., F. Kong, K. Li, and S. Sheng, "Analysis of a log periodic nano-antenna for multi-resonant broadband field enhancement and the Purcell factor," Optics Communications, Vol. 342, 230-237, 2015.
doi:10.1016/j.optcom.2014.12.075

26. Soliman, E. A., "Wideband nanocrescent plasmonic antenna with engineered spectral response," Microwave and Optical Technology Letters, Vol. 55, No. 3, 624-629, 2013.
doi:10.1002/mop.27347

27. Aouani, H., M. Rahmani, H. Sípová, V. Torres, K. Hegnerová, M. Beruete, and S. A. Maier, "Plasmonic nanoantennas for multispectral surface-enhanced spectroscopies," The Journal of Physical Chemistry C, Vol. 117, No. 36, 18620-18626, 2013.
doi:10.1021/jp404535x

28. Smolyaninov, A., L. Pang, L. Freeman, M. Abashin, and Y. Fainman, "Broadband metacoaxial nanoantenna for metasurface and sensing applications," Optics Express, Vol. 22, No. 19, 22786-22793, 2014.
doi:10.1364/OE.22.022786

29. Baffou, G., R. Quidant, and F. J. García de Abajo, "Nanoscale control of optical heating in complex plasmonic systems," ACS Nano, Vol. 4, No. 2, 709-716, 2010.
doi:10.1021/nn901144d

30. http://www.lumerical.com.

31. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/PhysRevB.6.4370

32. Govorov, A. O. and H. H. Richardson, "Generating heat with metal nanoparticles," Nano Today, Vol. 2, No. 1, 30-38, 2007.
doi:10.1016/S1748-0132(07)70017-8

33. Purcell, E. M., "Spontaneous transition probabilities in radio-frequency spectroscopy," Phys. Rev., Vol. 69, 681, 1946.

34. Sun, G., J. B. Khurgin, and R. A. Soref, "Practical enhancement of photoluminescence by metal nanoparticles," Appl. Phys. Lett., Vol. 94, No. 10, 101103, 2009.
doi:10.1063/1.3097025

35. Rogobete, L., F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Optics Letters, Vol. 32, No. 12, 1623-1625, 2007.
doi:10.1364/OL.32.001623

36. Chu, Y., M. G. Banaee, and K. B. Crozier, "Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies," ACS Nano, Vol. 4, No. 5, 2804-2810, 2010.
doi:10.1021/nn901826q

37. Lin, J., Y. Zhang, J. Qian, and S. He, "A nano-plasmonic chip for simultaneous sensing with dual-resonance surface-enhanced Raman scattering and localized surface plasmon resonance," Laser Photon. Rev., Vol. 8, No. 4, 610-616, 2014.
doi:10.1002/lpor.201400029

38. Palomba, S., M. Danckwerts, and L. Novotny, "Nonlinear plasmonics with gold nanoparticle antennas," Journal of Optics A: Pure and Applied Optics, Vol. 11, No. 11, 114030, 2009.
doi:10.1088/1464-4258/11/11/114030

39. Noginov, M. A., G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, and U. Wiesner, "Demonstration of a spaser-based nanolaser," Nature, Vol. 460, 1110-1112, 2009.
doi:10.1038/nature08318