Vol. 64
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-11-06
Design of a Compact Orthogonal Broadband Printed MIMO Antennas for 5-GHz ISM Band Operation
By
Progress In Electromagnetics Research B, Vol. 64, 47-62, 2015
Abstract
This paper presents a new design approach for compact orthogonal broadband printed multiple-input multiple-output (MIMO) antennas based on a coplanar waveguide (CPW)-fed hexagonal-ring monopole antenna (HRMA) element. The design procedure of the basic radiating element is initiated from a stripline (SL)-fed circular monopole antenna (CMA). Then various antennas involved in the design evolution process are introduced to attain a compact CPW-fed HRMA. This basic antenna element has a compact size of 13×10 mm2, 50% smaller than SL-fed CMA, and a prototype of this antenna is built and tested. Based on HRMA element, compact two- and four-element MIMO antenna systems are designed, fabricated and experimentally demonstrated for 5-GHz ISM band operation. The MIMO antenna systems use orthogonally configured of identical closely spaced HRMA elements, with CPW-fed printed on one side of the substrate to achieve good isolation. Design simulation is carried out with the aid of Computer Simulation Technology Microwave Studio (CST MWS) and confirmed with High Frequency Structure Simulator (HFSS). The experimental results are in close agreement with the simulated ones, which validates the design principle. Based on experimental results, the two MIMO antenna systems have an impedance bandwidth of more than 2 GHz, good isolation of less than 15 dB, and a low envelope correlation coefficient of better than -26 dB across the frequency band of (4-6 GHz), which are suitable for 5-GHz MIMO applications.
Citation
Dhirgham Kamal Naji, "Design of a Compact Orthogonal Broadband Printed MIMO Antennas for 5-GHz ISM Band Operation," Progress In Electromagnetics Research B, Vol. 64, 47-62, 2015.
doi:10.2528/PIERB15092104
References

1. Han, W., X. Zhou, J. Ouyang, Y. Li, R. Long, and F. Yang, "A six-port MIMO antenna system with high isolation for 5-GHz WLAN access points," IEEE Antennas Wireless Propag. Lett., Vol. 13, 880-883, 2014.
doi:10.1109/LAWP.2014.2310739

2. Malik, J., A. Patnaik, and M. V. Kartikeyan, "Novel printed MIMO antenna with pattern and polarization diversity," IEEE Antennas Wireless Propag. Lett., Vol. 14, 739-742, 2015.
doi:10.1109/LAWP.2014.2377784

3. Akdagli, A. and A. Toktas, "Design of wideband orthogonal MIMO antenna with improved correlation using a parasitic element for mobile handsets," International Journal of Microwave and Wireless Technologies, Vol. 7, 1-7, 2014.
doi:10.1017/S1759078714001263

4. Marzudi, W. N. N. W., Z. Z. Abidin, S. H. Dahlan, M. Yue, R. A. Abd-Alhameed, and M. B. Child, "A compact orthogonal wideband printed MIMO antenna for WiFi/WLAN/LTE applications," Microwave Opt. Technol. Lett., Vol. 57, No. 7, 1733-1738, Jul. 2015.
doi:10.1002/mop.29140

5. See, C. H., R. A. Abd-Alhameed, N. J. McEwan, S. M. R. Jones, R. Asif, and P. S. Excell, "Design of a printed MIMO/diversity monopole antenna for future generation handheld devices," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 24, No. 3, 348-359, May 2014.
doi:10.1002/mmce.20767

6. Babu, K. J., R. W. Aldhaheri, M. Y. Talha, and I. S. Alruhaili, "Design of a compact two element MIMO antenna system with improved isolation," Progress In Electromagnetics Research Letters, Vol. 48, 27-32, 2014.
doi:10.2528/PIERL14070307

7. Li, Z., Z. Du, M. Takahashi, K. Saito, and K. Ito, "Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 473-481, Feb. 2012.
doi:10.1109/TAP.2011.2173432

8. Li, J.-F., Q.-X. Chu, and T.-G. Huang, "A compact wideband MIMO antenna with two novel bent slits," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 482-489, Feb. 2012.
doi:10.1109/TAP.2011.2173452

9. Su, S.-W., C.-T. Lee, and F.-S. Chang, "Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 456-463, Feb. 2012.
doi:10.1109/TAP.2011.2173450

10. Wang, Y. and Z. Du, "A wideband printed dual-antenna with three neutralization lines for mobile terminals," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1495-1500, Mar. 2014.
doi:10.1109/TAP.2013.2295226

11. Zhao, L. and K.-L. Wu, "A dual-band coupled resonator decoupling network for two coupled antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 2843-2850, Jul. 2015.
doi:10.1109/TAP.2015.2421973

12. Zhang, Z., H. Wang, and Z. Feng, "Dual-port planar MIMO antenna with ultra-high isolation and orthogonal radiation patterns," Electronics Letters, Vol. 51, No. 1, 7-8, Jan. 2015.
doi:10.1049/el.2014.2998

13. Mallahzadeh, A. R., S. Es'haghi, and A. Alipour, "Design of an E-shaped MIMO antenna using IWO algorithm for wireless application at 5.8 GHz," Progress In Electromagnetics Research, Vol. 90, 187-203, 2009.
doi:10.2528/PIER08122704

14. Ryan, C. G. M. and G. V. Eleftheriades, "Two compact, wideband, and decoupled meanderlin antennas based on metamateria concepts," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1277-1280, 2012.
doi:10.1109/LAWP.2012.2225134

15. Zhang, X.-Y., X. Zhong, B. Li, and Y. Yu, "A dual-polarized MIMO antenna with EBG for 5.8 GHz WLAN application," Progress In Electromagnetics Research Letters, Vol. 51, 15-20, 2015.
doi:10.2528/PIERL14112104

16. Wang, K., R. A. M. Mauermayer, and T. F. Eibert, "Compact two-element printed monopole array with partially extended ground plane," IEEE Antennas Wireless Propag. Lett., Vol. 13, 138-140, 2014.
doi:10.1109/LAWP.2014.2298256

17. Poole, I., "IEEE 802.11ac Gigabit Wi-Fi,", 2013 [Online], Avaible: http://www.radio-electronics.com/info/wireless/wi-fi/ieee-802-11acgigabit.php.

18. Sharawi, M. S., M. U. Khan, A. B. Numan, and D. N. Aloi, "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4265-4274, Aug. 2013.
doi:10.1109/TAP.2013.2263214

19. Ghosh, S., T.-N. Tran, and T. L.-Ngoc, "Dual-layer EBG-based miniaturized multi-element antenna for MIMO systems," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 3985-3997, Aug. 2014.
doi:10.1109/TAP.2014.2323410

20. Dai, X.-W., L. Li, Z.-Y.Wang, and C-H. Liang, "High isolation and compact MIMO antenna system with defected shorting wall," International Journal of Microwave and Wireless Technologies, Vol. 7, 1-6, 2014.

21. Abdalla, M. A. and A. A. Ibrahim, "Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1452-1455, 2013.
doi:10.1109/LAWP.2013.2288338

22. Kushwaha, N. and R. Kumar, "Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen," Progress In Electromagnetics Research B, Vol. 51, 177-199, 2013.
doi:10.2528/PIERB13031604

23. Karimian, R., H. Oraizi, S. Fakhte, and M. Farahani, "Novel F-shaped quad-band printed slot antenna for WLAN and WiMAX MIMO systems," IEEE Antennas Wireless Propag. Lett., Vol. 12, 405-408, 2013.
doi:10.1109/LAWP.2013.2252140

24. Moon, J. and Y. Kim, "Antenna diversity strengthens wireless LANs," Communication Systems Design, 15-22, Jan. 2003.

25. Kulkarni, A. and S. K. Sharma, "A multiband antenna with MIMO implementation for USB dongle size wireless devices," Microw. Opt. Technol. Lett., Vol. 54, No. 8, 1990-1994, Aug. 2012.
doi:10.1002/mop.26967

26. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, May 2003.
doi:10.1049/el:20030495

27. Fakhr, R. S., A. A. Lotfi-Neyestanak, and M. Naser-Moghadasi, "Compact size and dual band semicircle shaped antenna for MIMO applications," Progress In Electromagnetics Research C, Vol. 11, 147-154, 2009.
doi:10.2528/PIERC09102702

28. Luo, Y., Q.-X. Chu, J.-F. Li, and Y.-T. Wu, "A planar H-shaped directive antenna and its application in compact MIMO antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 4810-4814, 2013.
doi:10.1109/TAP.2013.2267193

29. Moghadasi, M. N., A. Danideh, A. Bakhtiari, and R. Sadeghifakhr, "Compact slot antenna for MIMO applications in the WLAN bands," Microwave Opt. Technol. Lett., Vol. 55, No. 10, 2490-2493, Oct. 2013.
doi:10.1002/mop.27855