Vol. 44
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-11-24
A Decomposition Method for Computing Radiowave Propagation Loss Using Three-Dimensional Parabolic Equation
By
Progress In Electromagnetics Research M, Vol. 44, 183-189, 2015
Abstract
The parabolic equation(PE) method is widely used in radiowave propagation predictions. It has the advantages of high efficiency and stability, but it will lead to greater predicting errors in some situations, because the effects of transverse terrain gradients are not modeled. This problem can be solved by extending the 2D PE to the three-dimensional (3D) PE. However, the computing efficiency will degrade because of large scale matrix operations. In this paper, a new method is presented, in which the 3D PE is decomposed into two 2D PEs. It increases the computational efficiency and accuracy effectively. To verify the capability of the proposed method in radiowave propagation prediction, an experiment platform was set up. The computational results using this new method are compared with the experimental and Method of Moment(MoM) numerical computational results. Good agreements are achieved in the comparison.
Citation
Guizhen Lu, Ruidong Wang, Zhi Cao, and Kehua Jiang, "A Decomposition Method for Computing Radiowave Propagation Loss Using Three-Dimensional Parabolic Equation," Progress In Electromagnetics Research M, Vol. 44, 183-189, 2015.
doi:10.2528/PIERM15092005
References

1. Recmmendation ITU-R P.1546-2 "Method for point to area prediction for terratrial services in the frequency range 30MHz to 3000 MHz," International Telecommunication Union Geneva, 2005.

2. Leontovich, M. A. and V. A. Fock, "Solution of propagation of electromagnetic waves along the Earths surface by the method of parabolic equations," J. Phys. USSR, Vol. 10, 13-23, 1946.

3. Tappert, F., "The parabolic equation method," Wave Propagation in Underwater Acoustics, J. B. Keller and J. S. Papadakis (eds.), 224-287, Springer-Verlag, New York, 1977.

4. Kuttler, J. R. and G. D. Dockery, "Theoretical description of the PE/Fourier split-step method of representing electromagnetic propagation in the troposphere," Radio Science, Vol. 26, No. 2, 381-393, 1991.
doi:10.1029/91RS00109

5. Dockery, G. D. and J. R. Kuttler, "An improved impedance-boundary algorithm for Fourier split-step solution of parabolic wave equation," IEEE Trans. AP, Vol. 44, No. 12, 1592-1599, 1996.
doi:10.1109/8.546245

6. Levy, M. F., "Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems," IEEE Trans. AP, Vol. 45, No. 9, 66-72, 1997.
doi:10.1109/8.554242

7. Ozgun, O., "Two-way Fourier split step algorithm over variable terrain with narrow and wide angle propagators," Antennas and Propagation Society International Symposium 2010 IEEE, 2010.

8. Apaydm, G. and L. Sevgi, "Groundwave propagation at short ranges and accurate source modeling," IEEE Mag. AP, Vol. 55, No. 3, 245-262, 2013.

9. Barrios, A. E., "Parabolic equation modeling in horizontally inhomogeneous environments," IEEE Trans. AP, Vol. 40, No. 7, 791-797, July 1992.
doi:10.1109/8.155744

11. Zelley, C. A., "Radiowave propagation over irregular terrain using the 3D parabolic eaquation," IEEE Trans. AP, Vol. 47, No. 10, 1586-1596, 1999.
doi:10.1109/8.805904

12. Saini, L. and U. Casiragh, "A 3D Fourier split-step technique for modelling microwave propagation in urban areas," Proc. 4th Eur. Conf. Radio Relay Syst., 210-214, October 1993.

13. Iqbal, A. and V. Jeoti, "A split step wavelet method for radiowave propagation modelling in tropospheric ducts," Radioengineering, Vol. 23, No. 4, 987-996, 2014.

14. Ozgun, O., "Recursive two-way parabolic equation approach for modeling terrain effects in tropospheric propagation," IEEE Trans. AP, Vol. 57, No. 9, 2706-2714, 2009.
doi:10.1109/TAP.2009.2027166

15. Apaydin, G. and O. Ozgun, "Two-way split-step fourier and finite element based parabolic equation propagation tools: comparisons and calibration," IEEE Trans. AP, Vol. 58, No. 4, 1302-1313, 2010.
doi:10.1109/TAP.2010.2041169