Vol. 154
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-11-06
The Time-Harmonic Discontinuous Galerkin Method as a Robust Forward Solver for Microwave Imaging Applications
By
Progress In Electromagnetics Research, Vol. 154, 1-21, 2015
Abstract
Novel microwave imaging systems require flexible forward solvers capable of incorporating arbitrary boundary conditions and inhomogeneous background constitutive parameters. In this work we focus on the implementation of a time-harmonic Discontinuous Galerkin Method (DGM) forward solver with a number of features that aim to benefit tomographic microwave imaging algorithms: locally varying high-order polynomial field expansions, locally varying high-order representations of the complex constitutive parameters, and exact radiating boundary conditions. The DGM formulated directly from Maxwell's curl equations facilitates including both electric and magnetic contrast functions, the latter being important when considering quantitative imaging with magnetic contrast agents. To improve forward solver performance we formulate the DGM for time-harmonic electric and magnetic vector wave equations driven by both electric and magnetic sources. Sufficient implementation details are provided to permit existing DGM codes based on nodal expansions of Maxwell's curl equations to be converted to the wave equation formulations. Results are shown to validate the DGM forward solver framework for transverse magnetic problems that might typically be found in tomographic imaging systems, illustrating how high-order expansions of the constitutive parameters can be used to improve forward solver performance.
Citation
Ian Jeffrey, Nicholas Geddert, Kevin Brown, and Joe LoVetri, "The Time-Harmonic Discontinuous Galerkin Method as a Robust Forward Solver for Microwave Imaging Applications," Progress In Electromagnetics Research, Vol. 154, 1-21, 2015.
doi:10.2528/PIER15090403
References

1. Hesthaven, J. S. and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications, Springer, 2008.

2. Hesthaven, J. S. and T. Warburton, "Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell's equations," J. Comput. Phys., Vol. 181, No. 1, 186-221, 2002.
doi:10.1006/jcph.2002.7118

3. Jeffrey, I., "Finite-volume simulations of Maxwell's equations on unstructured grids,", Ph.D. Dissertation, University of Manitoba, 2011.
doi:10.1006/jcph.2002.7118

4. Liu, M., K. Sirenko, and H. Bagci, "An efficient discontinous Galerkin finite element method for highly accurate solution of Maxwell's equations," IEEE Trans. Antennas. Propag., Vol. 60, No. 8, 3992-3998, 2012.
doi:10.1109/TAP.2012.2201092

5. Shi, Y. and C.-H. Liang, "Simulations of the left-handed medium using discontinuous Galerkin method based on the hybrid domains," Progress In Electromagnetics Research, Vol. 63, 171-191, 2006.
doi:10.2528/PIER06050803

6. Buffa, A. and I. Perugia, "Discontinuous Galerkin approximation of the Maxwell eigenproblem," SIAM J. Numer. Anal., Vol. 44, No. 5, 2198-2226, 2006.
doi:10.1137/050636887

7. Warburton, T. and M. Embree, "The role of the penalty in the local discontinuous Galerkin method for Maxwell's eigenvalue problem," Comput. Method Appl. Mech. Eng., Vol. 195, No. 25, 3205-3223, 2006.
doi:10.1016/j.cma.2005.06.011

8. Li, L., S. Lanteri, and R. Perrussel, "A hybridizable discontinuous Galerkin method for solving 3D time-harmonic Maxwell's equations," Numerical Mathematics and Advanced Applications, 119-128, Springer, Berlin Heidelberg, 2013.

9. Bouajaji, M. E. and S. Lanteri, "High order discontinuous Galerkin method for the solution of 2D time-harmonic Maxwell's equations," Appl. Math. Comput., Vol. 219, No. 13, 7241-7251, 2013.
doi:10.1016/j.amc.2011.03.140

10. Arnold, D. N., F. Brezzi, B. Cockburn, and L. D.Marini, "Unified analysis of discontinuous Galerkin methods for elliptic problems," SIAM J. Numer. Anal., Vol. 39, No. 5, 1749-1779, 2002.
doi:10.1137/S0036142901384162

11. Gabard, G., "Discontinuous Galerkin methods with plane waves for time-harmonic problems," J. Comput. Phys., Vol. 225, No. 2, 1961-1984, 2007.
doi:10.1016/j.jcp.2007.02.030

12. Perugia, I., D. Schötzau, and P. Monk, "Stabilized interior penalty methods for the time-harmonic Maxwell equations," Comput. Method Appl. Mech. Eng., Vol. 191, No. 41, 4675-4697, 2002.
doi:10.1016/S0045-7825(02)00399-7

13. Lohrengel, S. and S. Nicaise, "A discontinuous Galerkin method on refined meshes for two-dimensional time-harmonic Maxwell equations in composite materials," J. Comput. Appl. Math., Vol. 206, No. 1, 27-54, 2007.
doi:10.1016/j.cam.2006.05.020

14. Hiptmair, R., A. Moiola, and I. Perugia, "Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations," Math. Comput., Vol. 82, No. 281, 247-268, 2013.
doi:10.1090/S0025-5718-2012-02627-5

15. Jin, J., The Finite Element Method in Electromagnetics, Wiley, 2002.

16. Dolean, V., H. Fol, S. Lanteri, and R. Perrussel, "Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods," J. Comput. Appl. Math., Vol. 218, No. 2, 435-445, 2008.
doi:10.1016/j.cam.2007.05.026

17. Zakaria, A., I. Jeffrey, and J. LoVetri, "Full-vectorial parallel finite-element contrast source inversion method," Progress In Electromagnetics Research, Vol. 142, 463-483, 2013.
doi:10.2528/PIER13080706

18. Zakaria, A., A. Baran, and J. LoVetri, "Estimation and use of prior information in FEM-CSI for biomedical microwave tomography," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1606-1609, 2012.
doi:10.1109/LAWP.2012.2237537

19. Bellizzi, G., O. M. Bucci, and I. Catapano, "Microwave cancer imaging exploiting magnetic nanoparticles as contrast agent," IEEE Trans. Biomed. Eng., Vol. 58, No. 9, 2528-2536, 2011.
doi:10.1109/TBME.2011.2158544

20. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction, Springer, 2002.
doi:10.1007/978-1-4757-3679-3

21. Bonnet, P., X. Ferrieres, B. L. Michielsen, P. Klotz, and J. L. Roumiguires, Finite-volume Time Domain Method, 307-367, Academic Press, 1999.

22. Sankaran, K., C. Fumeaux, and R. Vahldieck, "Cell-centered finite-volume-based perfectly matched layer for time-domain Maxwell system," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 3, 1269-1276, 2006.
doi:10.1109/TMTT.2006.869704

23. Dosopoulos, S. and J.-F. Lee, "Interior penalty discontinuous Galerkin finite element method for the time-dependent first order Maxwell's equations," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 4085-4090, 2010.
doi:10.1109/TAP.2010.2078445

24. Pearson, L., R. Whitaker, and L. Bahrmasel, "An exact radiation boundary condition for the finite-element solution of electromagnetic scattering on an open domain," IEEE Trans. Magn., Vol. 25, No. 4, 3046-3048, 1989.
doi:10.1109/20.34364

25. Firsov, K. D. and J. LoVetri, "FVTD-integral equation hybrid for Maxwell's equations," Int. J. Numer. Model. El., Vol. 21, No. 1-2, 29-42, 2008.
doi:10.1002/jnm.662

26. Ziolkowski, R. W., N. K. Madsen, and R. C. Carpenter, "Three-dimensional computer modeling of electromagnetic fields: A global lookback lattice truncation scheme," J. Comput. Phys., Vol. 50, No. 3, 360-408, 1983.
doi:10.1016/0021-9991(83)90103-1

27. Shanker, B., M. Lu, A. A. Ergin, and E. Michielssen, "Plane-wave time-domain accelerated radiation boundary kernels for FDTD analysis of 3-D electromagnetic phenomena," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3704-3716, 2005.
doi:10.1109/TAP.2005.858590

28. Harrington, R. F., Time-harmonic Electromagnetic Fields, 2nd Ed., Wiley-Interscience, 2001.
doi:10.1109/9780470546710

29. Geuzaine, C. and J.-F. Remacle, "GMSH: A 3-D finite-element mesh generator with built-in pre- and post-processing facilities," Int. J. Numer. Meth. Eng., Vol. 79, No. 11, 1309-1331, 2009.
doi:10.1002/nme.2579

30. Jeffrey, I., J. Aronsson, M. Shafieipour, and V. Okhmatovski, "Error controllable solutions of large-scale problems in electromagnetics: MLFMA-accelerated locally corrected Nyström solutions of CFIE in 3D," IEEE Antennas Propag. Mag., Vol. 55, No. 3, 294-308, 2013.
doi:10.1109/MAP.2013.6586692

31. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002

32. Burfeindt, M. J., et al. "MRI-derived 3-D-printed breast phantom for microwave breast imaging validation," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1610-1613, 2012.
doi:10.1109/LAWP.2012.2236293