1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamat absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
2. Chambers, B., "Optimum design of a salisbury screen radar absorber," Electron. Lett., Vol. 30, 1353-1354, 1994.
doi:10.1049/el:19940896
3. Salisbury, W. W., "Absorbent body of electromagnetic waves,", United States Patent 2,599,944, June 10, 1952.
4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628
6. Enoch, S., G. Tayeb, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 3901-3904, 2002.
doi:10.1103/PhysRevLett.89.213902
7. Fallahi, A., A. Yahaghi, H. R. Benedickter, H. Abiri, M. Sarabandi, and C. Hafner, "Thin wideband radar absorbers," IEEE Trans. Antennas Propag., Vol. 58, 4051-4058, 2010.
doi:10.1109/TAP.2010.2078482
8. Puscasu, I. and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett., Vol. 92, 233102, 2008.
doi:10.1063/1.2938716
9. Liu, X., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective Infrared spatial and frequency selective," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403
10. Rosenberg, J., R. V. Shenoi, S. Krishna, and O. Painter, "Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors," Appl. Phys. Lett., Vol. 95, 161101, 2009.
doi:10.1063/1.3244204
11. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," App. Phys. Lett., Vol. 96, 251104, 2010.
doi:10.1063/1.3442904
12. Li, M. H., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409
13. Lee, H.-M. and H. Lee, "A dual band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.
doi:10.2528/PIERL12050110
14. Ghosh, S., D. Sarkar, S. Bhattacharyya, and K. V. Srivastava, "Design of an ultra-thin dual band microwave metamaterial absorber," 6th Annual Conf., ATMS, 38-41, Kolkata, India, 2013.
15. Bhattacharyya, S. and K. V. Srivastava, "Triple band polarization independent ultra-thin metamatetial absorber using electric field driven LC resonator," Journal App. Phys., Vol. 115, 064508, 2014.
doi:10.1063/1.4865273
16. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Opt. Exp., Vol. 21, 9691-9702, 2013.
doi:10.1364/OE.21.009691
17. Ghosh, S., S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, "Bandwidth enhanced polarization insensitive microwave metamaterial absorber and its equivalent circuit model," Journal App. Phys., Vol. 115, 104503, 2014.
doi:10.1063/1.4868577
18. Lee, J. and S. Lim, "Bandwidth-enhanced polarization insensitive microwave metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
doi:10.1049/el.2010.2770
19. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Triple band polarization independent ultra-thin metamaterial absorber with bandwidth enhancement at X-band," Journal App. Phys., Vol. 115, 094514, 2013.
doi:10.1063/1.4820569
20. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Bandwidth-enhanced metamaterial absorber using electric filed driven LC resonator for airborne radar applications," Microw. Opt. Techno. Lett., Vol. 55, 2131-2137, 2013.
doi:10.1002/mop.27786
21. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber," Microw. Opt. Techno. Lett., Vol. 56, 350-355, 2014.
doi:10.1002/mop.28122
22. Bhattacharyya, S., S. Ghosh, D. Chaurasiya, and K. V. Srivastava, "Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber," Appl. Phys. A, Vol. 118, 207-215, 2014.
doi:10.1007/s00339-014-8908-z
23. Jaradat, H. and A. Akyurtlu, "Infrared (IR) absorber based on multiresonant structures," IEEE Trans. Antennas Propag. Lett., Vol. 11, 1222-1225, 2012.
doi:10.1109/LAWP.2012.2223652
24. Ghosh, S., S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, "An ultrwideband ultrathin metamaterial absorber based on circular split rings," IEEE Trans. Antennas Propag. Lett., Vol. 14, 1172-1175, 2015.
doi:10.1109/LAWP.2015.2396302
25. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas Wireless Propag. Lett., Vol. 14, 511-514, 2015.
doi:10.1109/LAWP.2014.2369732
26. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114