Vol. 44
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-10-07
A Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber
By
Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015
Abstract
A novel design of wideband, ultra-thin, wide-angle metamaterial microwave absorber has been presented. The unit cell of the proposed structure is designed by using parametric optimization in such a way that absorption frequencies come closer and give wideband response. For normal incidence, the simulated FWHM bandwidth of the proposed structure is 1.94 GHz, i.e. from 5.05 GHz to 6.99 GHz and -10 dB absorption bandwidth is 1.3 GHz from 5.27 GHz to 6.57 GHz. The proposed structure has been analyzed for different angles of polarization, and it gives high absorption (more than 50%) for oblique angles of incidence up to 60˚. The designed absorber is in low profile with a unit cell size of λ0/6 and ultrathin with a thickness of λ0/32 at the center frequency of 5.92 GHz corresponding to 10 dB absorption bandwidth. The current and electromagnetic field distributions have been analyzed to understand the absorption mechanism of the absorber. An array of the proposed absorber has been fabricated and experimentally tested for various polarization angles and oblique incidences of electromagnetic wave. The proposed absorber is well suited for surveillance and other defense applications.
Citation
Deepak Sood, and Chandra Charu Tripathi, "A Wideband Wide-Angle Ultra-Thin Metamaterial Microwave Absorber," Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015.
doi:10.2528/PIERM15082903
References

1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamat absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

2. Chambers, B., "Optimum design of a salisbury screen radar absorber," Electron. Lett., Vol. 30, 1353-1354, 1994.
doi:10.1049/el:19940896

3. Salisbury, W. W., "Absorbent body of electromagnetic waves,", United States Patent 2,599,944, June 10, 1952.

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

6. Enoch, S., G. Tayeb, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, 3901-3904, 2002.
doi:10.1103/PhysRevLett.89.213902

7. Fallahi, A., A. Yahaghi, H. R. Benedickter, H. Abiri, M. Sarabandi, and C. Hafner, "Thin wideband radar absorbers," IEEE Trans. Antennas Propag., Vol. 58, 4051-4058, 2010.
doi:10.1109/TAP.2010.2078482

8. Puscasu, I. and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett., Vol. 92, 233102, 2008.
doi:10.1063/1.2938716

9. Liu, X., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective Infrared spatial and frequency selective," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403

10. Rosenberg, J., R. V. Shenoi, S. Krishna, and O. Painter, "Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors," Appl. Phys. Lett., Vol. 95, 161101, 2009.
doi:10.1063/1.3244204

11. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," App. Phys. Lett., Vol. 96, 251104, 2010.
doi:10.1063/1.3442904

12. Li, M. H., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

13. Lee, H.-M. and H. Lee, "A dual band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.
doi:10.2528/PIERL12050110

14. Ghosh, S., D. Sarkar, S. Bhattacharyya, and K. V. Srivastava, "Design of an ultra-thin dual band microwave metamaterial absorber," 6th Annual Conf., ATMS, 38-41, Kolkata, India, 2013.

15. Bhattacharyya, S. and K. V. Srivastava, "Triple band polarization independent ultra-thin metamatetial absorber using electric field driven LC resonator," Journal App. Phys., Vol. 115, 064508, 2014.
doi:10.1063/1.4865273

16. Park, J. W., P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. P. Lee, "Multi-band metamaterial absorber based on the arrangement of donut-type resonators," Opt. Exp., Vol. 21, 9691-9702, 2013.
doi:10.1364/OE.21.009691

17. Ghosh, S., S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, "Bandwidth enhanced polarization insensitive microwave metamaterial absorber and its equivalent circuit model," Journal App. Phys., Vol. 115, 104503, 2014.
doi:10.1063/1.4868577

18. Lee, J. and S. Lim, "Bandwidth-enhanced polarization insensitive microwave metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
doi:10.1049/el.2010.2770

19. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Triple band polarization independent ultra-thin metamaterial absorber with bandwidth enhancement at X-band," Journal App. Phys., Vol. 115, 094514, 2013.
doi:10.1063/1.4820569

20. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Bandwidth-enhanced metamaterial absorber using electric filed driven LC resonator for airborne radar applications," Microw. Opt. Techno. Lett., Vol. 55, 2131-2137, 2013.
doi:10.1002/mop.27786

21. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber," Microw. Opt. Techno. Lett., Vol. 56, 350-355, 2014.
doi:10.1002/mop.28122

22. Bhattacharyya, S., S. Ghosh, D. Chaurasiya, and K. V. Srivastava, "Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber," Appl. Phys. A, Vol. 118, 207-215, 2014.
doi:10.1007/s00339-014-8908-z

23. Jaradat, H. and A. Akyurtlu, "Infrared (IR) absorber based on multiresonant structures," IEEE Trans. Antennas Propag. Lett., Vol. 11, 1222-1225, 2012.
doi:10.1109/LAWP.2012.2223652

24. Ghosh, S., S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, "An ultrwideband ultrathin metamaterial absorber based on circular split rings," IEEE Trans. Antennas Propag. Lett., Vol. 14, 1172-1175, 2015.
doi:10.1109/LAWP.2015.2396302

25. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory," IEEE Antennas Wireless Propag. Lett., Vol. 14, 511-514, 2015.
doi:10.1109/LAWP.2014.2369732

26. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114